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ABSTRACT

Cascade Learning (CL) [20] is a new adaptive approach
to train deep neural networks. It is particularly suited
to transfer learning, as learning is achieved in a layer-
wise fashion, enabling the transfer of selected layers
to optimize the quality of transferred features. In the
domain of Human Activity Recognition (HAR), where
the consideration of resource consumption is critical, CL
is of particular interest as it has demonstrated the abil-
ity to achieve significant reductions in computational
and memory costs with negligible performance loss. In
this paper, we evaluate the use of CL and compare it to
end to end (E2E) learning in various transfer learning
experiments, all applied to HAR. We consider trans-
fer learning across objectives, for example opening the
door features transferred to opening the dishwasher. We
additionally consider transfer across sensor locations
on the body, as well as across datasets. Over all of our
experiments, we find that CL achieves state of the art
performance for transfer learning in comparison to pre-
viously published work, improving F; scores by over
15%. In comparison to E2E learning, CL performs simi-
larly considering F; scores, with the additional advan-
tage of requiring fewer parameters. Finally, the overall
results considering HAR classification performance and
memory requirements demonstrate that CL is a good
approach for transfer learning.
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1 INTRODUCTION

Recognizing human activities from sensor based mea-
surements is a challenging and useful problem in ma-
chine learning with a wide range of potential applica-
tions, particularly related to personalized healthcare.
Interest in this topic has grown significantly in recent
years with increasing availability of cheap wearable
sensors integrated into everyday devices such as smart
phones. Remote monitoring of elderly in homes [16] and
early diagnosis of complex diseases [21] are examples
of the use of activity recognition.

Neural networks are state-of-the art techniques for
solving pattern classification and regression problems.
Recent surge in research activity on this topic, focus-
ing specifically on deep architectures, has resulted in
impressive advances in a number of topics such as com-
puter vision [15], machine translation and audio pro-
cessing [7]. While much of the impressive development
seen in recent years is empirical, increasing the depth of
networks is thought to enable the extraction of invariant
features that help accurate inference. Specifically with
respect to convolutional networks [33], it is possible to
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show early layers extracting recognizable low level im-
age features, and later layers modelling more abstract
representations.

While in much of neural network practice, the ar-
chitecture of the network is either fixed or tuned as a
hyper-parameter by cross validation, several authors
have considered adaptive architectures. These are either
constructive architectures, (i.e. start from a small net-
work and grow in complexity) as in the case of Platt’s
Resource Allocation Network [10, 14, 25], or achieve
architecture adaptation by pruning, by starting from
a large network and gradually removing weights or
nodes whose contribution to performance is minimal.
Le Cun et al.’s Optimum Brain Damage [19] is an exam-
ple of the latter. In this context, Fahlman et al.’s Cascade
Correlation approach [10], where a multi-layer percep-
tron model is grown in architecture, is of specific interest
in this paper. Deep CL [20] is an approach, inspired by
Cascade Correlation, and is designed to train deep neu-
ral networks in a layer-wise fashion (discussed in more
detail later), in which significant reductions in compu-
tational and memory costs were shown to be achieved
at negligible loss of performance. Similar results are
shown by Belilovsky et al. [1] on the ImageNet task.
Layer-wise training of Restricted Boltzmann Machines
(RBM) has been considered in [2].

Deep neural networks have also been applied to HAR
by several authors [12, 30] taking advantage of their abil-
ity at carrying out feature extraction and classification
simultaneously. As with a number of other problems, ex-
tracting relevant features by automatical training is seen
as an advantage over the use of hand-crafted features
as used in [3, 18, 24]. The most popular Deep Learn-
ing approaches applied in HAR include Multi-Layer
Perceptrons (MLPs), Convolutional Neural Networks
(CNNSs) [23], Recurrent Neural Networks [9], and Long
Short Term Memory networks (LSTMs) [11]. Although
the above approaches show state of the art generaliza-
tion performance, the computational complexity and
memory requirements of CNNs is noted to be gener-
ally higher than the corresponding feedforward MLPs
used [5, 13]. We note that HAR in real-world applica-
tions may require low computational cost solutions due
to the necessity to integrate them on wearable devices.
This is one motivation for the pursuit of the CL architec-
ture pursued in this work.

Cascade Learning

As mentioned before, deep CL, inspired by Fahlman et
al.’s cascade correlation approach [10] is a layer-wise
training strategy for multi-layer networks. Empirically,
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Figure 1: An overview of training MLPs using End to End
(E2E) Learning and Cascade Learning (CL). In CL, layers are
progressively added and weights of only the most recently
added hidden layer and the output layer are trained by gra-
dient descent. The previously trained layers are frozen. E2E
learning is the standard learning approach where all of the
layers in the network are trained simultaneously.

it is shown to trade some performance accuracy to sig-
nificant gain in computation and memory requirements.
The training process in CL is shown in Figure 1 and the
idea is to add layers to the network and train only the
weights of the most recently added hidden layer and the
output layer, keeping the previous trained layers frozen.
In several multi-class problems considered by Marquez
et al. [20], the corresponding confusion matrix is shown
to improve in a layer-wise fashion. We believe such a
layer-wise strategy will have the effect of coarse-to-fine
learning whereby early layers extract broad features of
the problem domain due to their limited capacity and
progressively later layers extract features fine-tuned to
the specific problem. This is an appealing property for
transfer learning as we demonstrate in this paper.

Transfer Learning on HAR

Transfer learning on HAR problems have been consid-
ered by several authors [4, 17, 22] and reviewed in Cook
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et al. [6]. Most of these approaches have considered
traditional machine learning methods such as Hidden
Markov Models [24, 28], k-Nearest neighbor and Sup-
port Vector Machines (SVM) [4]. More recently, Morales
and Roggen [22] proposed transfer learning combined
with deep learning networks on HAR, the closest in
literature to the work we report in this paper. These au-
thors use an eight-layer neural network of convolutional
layers with 64 5 x 5 kernels in each layer and a final
LSTM layer of 128 cells. Transfer learning is achieved by
copying and freezing the first few layers of the source
model and training the later layers from random initial-
ization. With such a large network of a total of 986,257
parameters, GPU support is necessary for training the
models. In addition to the need for heavy computation,
the results reported for multi-class transfer learning
classification were in the region of 50%, as measured
by the Fj score. The feed-forward cascade architecture
we report in this paper, on the other hand, requires far
fewer parameters (49,224) and could be run with CPU
computing alone, achieving significantly higher transfer
learning results of 76 — 80%, as measured by the F; score
(see Results for Task 2). Note, throughout the paper, we
use IMU sensors because which are better by being nu-
merically integrated to obtain 3-D position/orientation
of an object where linear accelerations and rotational
velocities are measured directly, rather than obtaining
accelerations and velocities by taking the time deriva-
tive of position data [26]. However, for comparing the
results to [22] we use the exact same sensors and data for
a fair comparison. Only the model architecture differs.
The contributions of this paper are as follows. First,
we show that a cascade trained multi-layer architecture
achieves competitive performance in comparison to E2E
training in HAR. The networks we use are much sim-
pler than the deep neural network architecture used
by previous authors on the same benchmark problems.
Secondly, we explore transfer learning of features ex-
tracted from a trained classifier to a related task and
show that the cascade-trained architecture has the prop-
erty of learning in a coarse-to-fine grained hierarchical
fashion, and achieve state of the art performance at sig-
nificantly low computational complexity. Finally, we
carry out experiments in transfer learning across two
different datasets and demonstrate results similar to
what is achieved with tasks within a single dataset.

2 DATASETS

For empirical work reported in this paper, we used two
benchmark datasets with different numbers of activ-
ity classes and data acquisition protocols. These are the
Opportunity [8] and Skoda Mini checkpoint (Skoda) [29]
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datasets. The former consists of 18 activities performed
by four subjects measured with inertial measurement
units (IMU) and 3D accelerometers as on-body sensors.
Figure 2 shows locations of sensor placement on the
body. The 18 activities of daily living (ADL) in this
dataset relate to behaviour in the kitchen such as open-
ing and closing doors, and motions made during clean-

mng.

@ =Complete Inertial Measurement Unit <= =Triaxial Accelerometer

Figure 2: The on-body placement of sensors of the
Opportunity dataset [27].

The Skoda dataset consists of 11 activities relating to
quality control activities in a car production setting. Ex-
amples include opening and closing of an engine hood
and closing of the vehicle’s trunk. Sensors consist of
20 3D accelerometers placed on both arms whose lo-
cations are shown in Figure 3. This dataset was 98Hz,
which we down-sampled to 30Hz for consistency with
Opportunity. In both cases, the three axes of each ac-
celerometer are treated as separate channels.

Figure 3: The on-body placement of sensors of the Skoda
dataset [31].
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Figure 4: Transfer learning in a Cascade Learning setting.

3 EMPIRICAL WORK

Within the realm of HAR, we report results on three
tasks in the setting of transfer learning with cascade
architectures: (Task 1) the performance of a cascade ar-
chitecture on multi-class activity recognition tasks to
establish that cascade training achieves accuracies sim-
ilar to E2E training; (Task 2) a comparison of transfer
learning across tasks within a given dataset, comparing
the transfer of features obtained from E2E and cascade
trained models; and (Task 3) transfer of learned features
across datasets, again comparing features learned by
the two different training methods. In all experimental
work reported here, we repeated the experiments with
five runs to assess the uncertainty in results with 400
training epochs. Results are quoted as micro F; scores as
well as weighted F; scores, where weighted averaging
was used to account for imbalance across classes. The
Adam optimizer was used in all experiments with a
heuristically determined initial learning rate of 0.0001.

Task 1: Activity Classification with CL

The multi-layer networks we empirically used in this
experiment for Opportunity had 5 layers with 25 units
for each layer, and for Skoda had 128 input units and
three hidden layers of 64, 64 and 32 units. The number
of output units corresponded to the number of classes.
We used hyperbolic tangent non-linearities in the hid-
den layer units and softmax for the output layer. For the
Opportunity dataset, we used all the IMU sensor mea-
surements and for Skoda we used the sensors placed
on the right arm. On Opportunity, we train the model
by using the data from ADL1, ADL2, ADL3 and drill
session, and test the model using data from ADL4 and

ADLS5 (the same protocols as [22]). For Skoda, we ran-
domly set 20% of the data for testing and the remainder
for training. Both train and test data are normalized to
[0,1] as in [23].

Task 2: Transfer Learning within an Activity Dataset

Table 1: Task 2: Summary of source and target domains used
for experiments reported on task 2.

Subtasks ‘ Source domain ‘ Target domains
Multi-class Subjects 1,2 and 3 | Subject 4
across users
‘ ‘ Door2
\ | Fridge
Binary class | | Dishwasher
(open vs. close) ‘ Door1 ‘ Drawerl
‘ | Drawer2
‘ ‘ Drawer3
14 class A(ngl?r?/ close
Multi-class (Open/close P
7 objectives)! Type one
) Type Two)?

1: 7 objectives include: Door1, Door2, Fridge, Dishwasher, Drawer1,
Drawer2 and Drawer3.

2: Type one and Type two are separated by the difference of hand
movements. Type one: Doors and Fridge. Type Two: Dishwasher

and Drawers.

e Multi-class Classification across Users

For comparison with [22], we use the same evaluation
method to explore the performance. The source data
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consists of data from subjects 1, 2 and 3 where the train
data are all data from subject 1 and ADL1, ADL2, ADL3
and drill session from subjects 2 and 3. The test data
includes all the data from subjects 2 and 3 in ADL4
and ADLS5. The target data is all the data from subject
4 where the train and test are divided in the same way
as for the source domain (i.e. ADL4 and ADLS5 are test
data).

e Multiple Binary Classification Tasks

To compare the transfer learning abilities of cascade ver-
sus E2E trained models within a domain of different
tasks, we used the Opportunity dataset which has open
and close activities on different objects (fridge, doors,
drawers and dishwasher). The underlying tasks have
similarities in the required movement, but may have
differences in required force and posture. We carried
out two sets of experiments in which we trained source
classifiers with one of the pairs of open/close (Door 1
and Dishwasher) and all other open/close pairs as tar-
get domains to transfer. We carried out experiments in
which the transfer was done from features taken from
each of the hidden layers and training a classifier layer
in the subsequent target domains. Note, these tasks are
summarized in detail in Table 1. The networks used in
these binary classification tasks consisted of six layers
with 25 hidden units in each. For the remaining exper-
iments, the method of dividing the train and test data
remains the same as previous work [22].

e Multi-class Classification Tasks

To test transfer learning in a more challenging multi-
class setting with features extracted from cascade and
E2E trained networks, we set up a 14 class problem with
open and close on seven different objects (fridge, door 1,
dishwasher efc.) as the source problem and a four-class
problem as the target to transfer summarized in Table 1.
For the target problem we identified the opening and
closing of doors and fridge as an activity with similar
hand movements (Type One) and the opening and clos-
ing of drawers and dishwasher as different from these
(Type Two). This grouping was done to be consistent
with the confusion matrices resulting in Task 1. Hence,
the four target classes in Task 2 were: Open Type One,
Close Type One, Open Type Two and Close Type Two.
To clarify the source and target domains for all experi-
ments done for Task 2, Table 1 shows the summary of
all the source and target domains.

Task 3: Transfer Learning across Datasets

To study transfer learning across two different domains
of HAR, we set up a problem using the Skoda and
Opportunity datasets. Sensors from similar positions on
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the left arm of Skoda and the right arm of Opportunity
datasets were chosen as 18 dimensional inputs with
open and close actions. These were from the six ac-
celerometers located at positions 1,2,16,21,27,29 in Fig-
ure 3 for the Skoda data and two IMUs, RLA and RUA
shown in Figure 2 for the Opportunity. We transfer fea-
tures from the Skoda to the Opportunity dataset as a
binary classification problem.

Performance comparisons were made considering
three ways of changing the transfer block (Figure 4):
(i) training a new classifier from random initialization;
(ii) training a new hidden layer and classification layer
with features transferred from the source problem; and
(iii) using the trained weights of the source model as
initial conditions and training the entire network on the
target problem. Note, of these (i) and (iii) could be seen
as differing only in the initial conditions of gradient
descent training. Hence, we show all the results from
the method (ii) for transfer learning.

4 RESULTS
Task 1: Activity Classification with CL

Tables 2 and 3 show the multi-class classification per-
formance of E2E versus cascade trained models on the
Opportunity and Skoda problems respectively. We note
that on both problems, both models achieve perfor-
mances comparable to results quoted by previous au-
thors on these problems (e.g. [32, 34]). Although our
simple neural network architecture shows lower perfor-
mance than the DeepConvLSTM model [23] for HAR
on Opportunity for classification, without considering
transfer learning, accuracy is not the focus of this pa-
per per se. Instead, we are interested in cascade trained
networks for transfer learning.

Table 2: Task 1: Classification Performance of Cascade and
E2E Learning on the 18-Class Opportunity Dataset. LX
means the X;;, layer from the network. The red and bold text
show the best performing case. For the remaining tables,
the same colour coding and layer notation is used. Due to
the imbalance among classes (including the null class with
the majority), the micro F; score shows higher performance.

Model Micro F; score (%) Weighted F; score (%)

CLLO 86.52+£0.31 84.16£0.36
CL1L1 86.88+£0.30 85.14£0.39
CLL2 86.78+0.23 85.36+0.40
CLL3 86.76+0.38 85.46+0.48
CL14 86.72+0.31 85.50+0.47
E2E 86.32+0.67 85.08£0.55
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Table 3: Task 1: Classification Performance of CL and E2E Learning on the test Skoda Dataset. In this table, we include two sit-
uations, including null class (11-class) and no null class (10-class). As the null class results in an imbalanced distribution, we
compare the weighted and micro F; scores on 11-class task where weighted F; shows slightly worse performance. Weighted
F; score counters the imbalance issues and gives more reasonable overall results.

Evaluation \ CLLO CLL1 CLL2 CLL3 \ E2E
Weighted F; score (%)

(No Null Class) 80.20£1.3 85.06+1.4 85.82+1.8 86.40+1.3 | 85.66+1.3
Micro F; score (%)

(No Null Class) 81.06+1.2 85.24+1.3 86.18+1.3 86.44+1.3 | 85.96+1.2
Weighted F score (%) | 71.34£2.1 77.70£1.6 79.08+1.5 79.54+1.5 | 78.36£1.0
Micro F; score (%) 72.70+1.8 78.40+15 79.66+1.4 79.98+1.3 | 79.14+1.0

Considering HAR classification, our simple architec-
ture achieves 86.88 £ 0.30% in comparison to DeepCon-
vLSTM which achieves 91.5% micro F; score. In terms
of parameters, our architecture only requires 49224,
whereas DeepConvLSTM requires 996800 + (128  18) +
18. We also have significant savings in terms of training
time, requiring 1 to 2 seconds per epoch with a CPU
in contrast to DeepConvLSTM which requires approx-
imate 3 seconds per epoch with GPU. Looking at the
results from Tables 2 and 3, we further note that with
CL, there is a progressive increase in performance as
additional layers are included making the model deep,
and the performance of CL is better than E2E learning
for both datasets.

Table 4: Task 2: Transfer Learning Performance Across
Users of CL and E2E Learning on the 18-Class Opportunity
Dataset.

Model Micro Fj score (%) Weighted F; score (%)

CLLO 84.18+0.33 80.70+0.37
CL1L1 83.56+0.67 80.16£0.54
CLL2 82.52+0.52 79.06£0.53
CLL3 82.14+0.63 78.42+0.63
CL L4 81.76+0.62 77.70£0.41
CLL5 81.34+0.70 77.10+0.58
E2E LO 80.90+0.46 76.24+0.44
E2E L1 81.44+0.64 77.12+0.48
E2E L2 82.80+0.43 78.82+0.33
E2E L3 82.921+0.52 79.26+0.46
E2E L4 82.64+0.75 79.08+0.92
E2E L5 81.68+0.52 77.58+0.51

Task 2: Transfer Learning Within a Dataset

For the results of transfer learning in this and following
subsections, a single hidden layer and a classification

layer are added to the extracted features and trained
using target domain data.

e Multi-class Classification across Users

Table 4 shows the performance of transfer learning
across users within Opportunity for comparison with
the same task in [22]. While the results displayed in
Table 4 are using the IMU sensors for consistency in
results presented in our paper, we also ran additional
experiments using the same sensor set-up as [22] using
15 channels from accelerometers. When considering the
exact same set-up as [22], we are also able to achieve
a performance of 75 - 78% micro F; score, which is a
significant improvement to the best results presented
in [22], (OnO(100%) in figure 3) which is around 60%
micro F; score.

Considering CL versus E2E learning, we notice the
best performance of transfer learning for the cascade
architecture is approximately 4% higher. We also learn
that with deeper layers of CL, the transferability de-
creases, with worse performance as we transfer later
layers of the network, while with the E2E network, the
performance first increases with subsequent layers, but
then decreases if we add transfer too many layers.

e Multiple Binary Classification Tasks

As an initial experiment to validate the difficulty of
the transfer task, we considered training on Open Door
1 vs. Open Door 2 as a source problem and testing on
Close Door 1 vs. Close Door 2 as target. The perfor-
mance (test accuracy with balance between two classes
around 48% vs. 52%) was 89 £ 0.25%. This suggested
that recognising the doors is an easy problem. However,
when training Open vs. Close on Door 1 and testing the
classifier on Open vs. Close on Door 2, the performance
(micro F; score) was 48.25 + 3.2%, suggesting this to be
more suitable problem that requires transfer learning.
Further problems we selected were based on this and
similar preliminary experiments.
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Table 5: Task 2: Transfer learning performance within the Opportunity dataset using CL and E2E Learning. The performance

of the binary classification is evaluated by weighted F; score (%).
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Model | Source: Door 1 | Target: Door 2 Fridge Dish washer Drawer1 Drawer2 Drawer3
CLLO 73.04+1.4 71.20+1.7 71.84+1.0 63.18+3.0 67.78+4.1 59.14+1.6 65.62£2.9
CL1L1 73.44+1.5 54.60+£3.7 63.56+2.5 56.22+1.5 60.40+1.4 55.38£1.0 49.38+2.3
CLL2 73.42+1.6 49.56+6.3 61.26£0.8 58.28+1.8 56.264+2.6 56.40+2.5 51.40+1.4
CLL3 73.44+1.5 42.70£6.9 49.441+4.3 50.26£8.1 34.58+4.5 47.46+4.0 50.16%1.6
CLL4 7342+£1.5 41.32+6.8 45.341+4.5 45.46+7.5 32.38+3.5 46.76+£3.5 48.34+2.8
CLL5 7342+£1.5 39.56+4.7 43.98+1.3 43.144+5.0 31.62+1.7 45.52+0.7 46.34+5.1
E2E LO - 64.64+1.3 76.50+1.4 60.30+6.4 69.34+2.7 54.16+2.3 56.48+1.4
E2E L1 - 65.92+19 72.68+4.8 55.20+8.1 66.36+4.0 55.12+4.0 55.644+2.4
E2EL2 - 64.64+£3.7 71.444+4.9 55.16£49 63.48+6.2 54.32+3.8 51.82+3.1
E2E L3 - 63.36+t4.1 68.441+5.5 54.38+4.8 62.084+3.5 51.78+4.2 52.16%4.7
E2E L4 - 59.78+£3.8 62.78+3.6 52.26+4.8 59.52+4.8 52.12+1.7 49.58+3.3
E2E L5 76.82+1.5 56.32+£5.1 59.34+3.2 54.22+4.6 53.94+8.4 51.84+4.2 50.62+3.5

Table 5 shows several binary classification tasks of
transfer learning with E2E and cascade trained net-
works with the source problems being opening and
closing of door 1 and six other problems taken as tar-
gets. We show results of transferring features taken from
various different layers of the networks trained on the
source problems. We note from Table 5 that for cas-
cade trained networks as feature extractors evaluated
by weighted F; score, there is a consistent monotonic
decline in performance with network depth where fea-
tures are taken from, while this is only partly true for
E2E trained networks. Best features for cascade trained
models are from the first hidden layer. This confirms
the motivating idea that there is a progressive special-
ization included by layer-wise training, coarse features
learnt early on and more detailed ones specific to the
task picked up in later layers. We also note that the
cascade trained network is competitive in performance
with the more widely used E2E trained models. We also
notice the overall level of transfer learning from door 1
to similar objectives, door 2 and fridge, is much higher
than to dissimilar objectives, dish washer and drawers.
Besides, the performance on dissimilar objectives (e.g.
Dish washer) has high variance (around 8%), which
may affect the observations.

These results should be compared against a baseline
of training on the source problem and testing on the
target problem without any further training. When we
tested this, the performance on the target class was in
the region of 48% for all of the problems considered.
This is sufficiently low to justify further training in the
target domains as undertaken in this study.

o Transfer learning from 14 classes to 4 classes

Results of transfer learning from cascade trained net-
works on this multi-class task are shown as confusion
matrices in Figure 5. Note in this task, we have intro-
duced a hierarchy into the classifier outputs, going from
a group of coarse tasks (Type One vs. Type Two) and then
finer tasks within the groups (Open vs. Close). Hence,
these results show a pattern different from what was
observed in Table 5 in that transfer from the final layer
gives better performance than transfer from the first
layer. This is a consequence of demanding the trans-
fer of features to a fine-grained classification problem
and this transfer confirms the coarse-to-fine nature of
features learned by CL.

Task 3: Transfer Learning across Datasets

A set of transfer learning experimental results across
datasets (training on a task in the Skoda data and trans-
ferring to Opportunity) are shown in Figure 6, with com-
petitive performance from the computationally simpler
cascade trained model and showing monotonic decrease
in performance with deeper layers. Here again we ob-
serve the same patterns of performance noted with the
results of Table 5.

5 DISCUSSION

The results shown in the previous section suggest a
monotonic decline in transferability from features taken
from early layers to later ones from the cascade network.
However, the later layers are necessary for increased
recognition accuracy of the source domain classification.
This observation confirms the view we wish to advance
that cascade training packs feature information in a
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Figure 5: Confusion matrices of transfer learning in the
Opportunity dataset, learning from a 14— class problem
down to a four-class problem with (a) transfer from layer
zero and (b) transfer from layer five.

specific way, coarse information in early layers and finer
details related to the source task in later layers.

6 CONCLUSIONS

In this paper, we have explored the usefulness of a par-
ticular approach to learning in layered networks: deep
CL. Layer-wise training restricts how information relat-
ing to the target may be packed in the network, which
is inherently different from the flexibility enjoyed by
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Figure 6: Transfer learning performance from Skoda to
Opportunity based on cascade and E2E learning. Corre-
sponding to task 3, the transfer learning is evaluated by (a)
weighted F; score and (b) micro F; score. For simplification,
D1, D2, DW, Dr1, Dr2, Dr3 are the abbreviation of Door 1,
Door 2, Dish Washer, Drawer 1, Drawer 2 and Drawer 3, re-
spectively, which is followed in this work unless otherwise
specified.

E2E training of the same architecture. Despite this dif-
ference, we find that cascade training achieves state
of the art performance on the two HAR classification
problems, not too different from E2E training, and with
significantly fewer parameters and training time than
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previous applications of deep neural networks. The ex-
traction of relevant features, in a hierarchical manner,
across layers in CL is demonstrated by the fact that fea-
tures taken from different layers to transfer across tasks
show monotonically decreasing performance when we
move from the first to the final layer. Coarse features
transferred from the first hidden layer give the best
performance with cascade trained networks as source
networks and, most importantly, these are as good as,
and sometimes better than, features transferred from
any layer of E2E trained networks. When we construct
a task that demands the transfer of finer features, we
are able to show that better features are obtained from
the final layer, further reinforcing this point.
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