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Abstract. The automatic analysis of real-life, long-term behavior and
dynamics of individuals and groups from mobile sensor data constitutes
an emerging and challenging domain. We present a framework to clas-
sify people’s daily routines (defined by day type, and by group affiliation
type) from real-life data collected with mobile phones, which include
physical location information (derived from cell tower connectivity), and
social context (given by person proximity information derived from Blue-
tooth). We propose and compare single- and multi-modal routine repre-
sentations at multiple time scales, each capable of highlighting different
features from the data, to determine which best characterized the under-
lying structure of the daily routines. Using a massive data set of 87000+
hours spanning four months of the life of 30 university students, we show
that the integration of location and social context and the use of multi-
ple time-scales used in our method is effective, producing accuracies of
over 80% for the two daily routine classification tasks investigated, with
significant performance differences with respect to the single-modal cues.

1 Introduction

Human activity modeling from large-scale sensor data is an emerging domain
relevant to many applications, such as determining the behaviour and habits of
individuals and the structure and dynamics of organizations [TI2]3]. This could
be useful for social science research and self-awareness tools. Given the massive
amount of data captured by ubiquitous sensors over long periods of time and
involving many people, fundamental questions to address through automatic
analysis include: Do people follow similar routines? Do certain people not follow
other’s routines? Are routines useful in group discovery?

Recent research has attempted to analyze complex, real-life activities from in-
door sensors such as cameras, microphones, proximity, or motion sensors [3I4l5//6].
The limitations with indoor spaces are that the sensors are often fixed and only
those activities that occur in the (local) physical space covered by the sensors
can be recognized. Other recent approaches use wearable devices carried by peo-
ple, which collect various types of evidence of their activities, including motion
in dynamic environments [7] and audio in face-to-face conversations [1I§]. How-
ever, these wearable devices are not always practical for multiple users over long
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periods of time. In this paper, we study human routines from sensors that have
become an integral part of our daily lives, mobile phones. The functionality of
this ubiquitous infrastructure of mobile devices is dramatically increasing [2//9],
not requiring users to modify their daily behavior for data collection.

We define routines to be temporal regularities in people’s lives. A routine often
involves patterns of locations (e.g. being at work or at home, or going from work
to home) and human interactions (e.g. as reflected by proximity information)
over time, possibly over different time scales. Automatic routine classification
and discovery are in general challenging tasks as people’s locations and inter-
actions often vary from day to day and from individual to individual, and data
from sensors can frequently be incomplete or noisy.

The problems addressed in this work are as follows: given a day in someone’s
life, measured solely in terms of the noisy location and proximity information
obtainable from a mobile phone, would this day more closely resemble a weekend
or a weekday? If the person analyzed was a student, would a day in her life
reveal potential group affiliations? More concretely, looking at the visualizations
of location and proximity days in Figure [Il does a given day (a row in each of
the visualizations) more closely resemble a weekend or a weekday? And do the
day’s routines appear more like an engineering or a business student’s typical
rituals? Answering such questions is difficult as users often work on weekends
and the similarity in routines over days is often high. We would like to know how
well we can automate these tasks. Using real-life data from the Reality Mining
dataset [2], involving a large group of people over thousands of hours of activity,
our work provides answers to these questions. This domain of research has been
reviewed as a very promising technology [10].

The first contribution of this work is the novel investigation of a set of
discriminant representations of location (measured from cell tower connection
information) and proximity (measured from Bluetooth information) within a
supervised learning framework. We investigated various representations charac-
terizing proximity and location features in a day, such as multiple time-scales,
proximity identity, quantity of proximate people, and representations with and
without time considerations, to determine which best represented the underlying
structure of the daily routines. The second contribution is the investigation of
location-driven and proximity-driven day-type classification from a single day
in the life of a user. The third contribution is the investigation of location-
driven and proximity-driven group-type classification from single users’ days.
The fourth contribution is the comparison of single-modal versus multi-modal
(i.e. multiple information sources) representations for location and proximity
data for the two activity recognition tasks at hand.

Overall, we found that integrating information at multiple time-scales is use-
ful, that fusing proximity and location information is beneficial compared with
individual cues, and that the targeted daily routines (day-type and student-
type) can be recognized with good accuracy (80.3% and 89.6%, respectively)
even though the sensor data is partly incomplete.
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There are many difficulties inherent to the activity recognition tasks at hand,
complicating the already challenging dataset we used. Issues with mobile phone
sensor data include poor indoor reception, incorrect data entries (due to the
phone being left behind) and Bluetooth errors, to name a few. Further, proximity
data is not always available, leaving many days without any information. Besides
difficulties with the dataset itself, other challenges include the facts that students
do not follow strict schedules, for example, they work on weekends regularly
complicating the day type classification and that students might work or take
classes in different buildings or offices, share offices or other spaces infrequently,
etc and none of this is known a priori. Further, the dataset contains various types
of students (undergraduate, graduate), which may follow different routines.

The paper is organized as follows. Section [2] presents the data set and high-
lights its inherent challenges. Section Bldescribes our approach. Experiments and
results are discussed in Section [l Conclusions are given in Section

2 Sensing Activity with Mobile Phones

The most widely deployed and used mobile computing device today is the mo-
bile phone [I1]. Current mobile phones can capture data related to the daily
routines of large numbers of people over a large period of time. More specifi-
cally, their locations, such as being at work or home, can be captured from cell
tower connections. Interactions can be captured by Bluetooth, which detects
other Bluetooth devices within a small radius. Phone call and SMS activities
can further be recorded. Phone application usage can be saved including the
camera, calendar, games, and web browser usage [2]. Finally, content, including
photos and video, can also be collected [9]. From the potential options, in this
paper we examine both location and Bluetooth data.

Recent work has been done using coarse-grained Global System for Mobile
communications (GSM) data from mobile phones to recognize high-level prop-
erties of user mobility (walking versus driving), as well as daily step count for a
very small number (3) of users over the course of one month [I1]. Both coarse
and fine-grained location systems have been used to perform location-driven ac-
tivity inference [I1I12]. In work by Eagle and Pentland [13], which is the closest
to ours, student type affiliations are determined by clustering location informa-
tion aggregated over a period of nine months. All of the works described used
location-driven activity inference. In this work, we investigate the student-type
task considering proximity-driven inference, in addition to location-driven in-
ference. Further, we investigate an additional task of day type classification. In
addition, we evaluate several representations for the dataset, inferring class types
from single days of data, as opposed to aggregated intervals of data.

There are many challenges and sources of noise inherent in mobile phone data.
They can be forgotten, turned off, or out of battery. There are also issues with
cell tower connections such as poor indoor reception and fluctuating connections.
Bluetooth errors include detection between certain types of walls, recording peo-
ple who are not physically proximate. There is also a small probability Bluetooth
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will not discover other proximate devices [2]. Further, ground truth collection
is a difficult task especially over long periods of time. Users labeling is often
incomplete, unclear and often unavailable, sometimes due to privacy concerns.
All these issues lead to noisy, partly incomplete and partly inaccurate data with
very little ground truth to rely on.

We use the Reality Mining dataset [2], collected by N. Eagle at MIT. The
activities of 100 subjects were recorded by Nokia 6600 smart phones over the
2004-2005 academic year. This comprises over 800 000 hours of data on human
activity; if we take into account the location, proximity, and phone call informa-
tion, this corresponds to over 2 million hours of collected data. This dataset has
been built respecting the privacy concerns of individuals in the study. The sub-
jects in the study are students and staff of MIT that live in a large geographical
area covered by over 32000 cell towers. They work in offices with computers that
have Bluetooth devices which can sense in a 5-10m radius [2]. The public location
information available for all subjects in the study includes the cell tower 1D, as
well as the date and duration of connection. All of the subjects labeled the cell
tower ID’s which correspond to their homes. We obtained a list of MIT work cell
towers which correspond to the Media Lab and the Sloan Business school. The
Bluetooth proximity data collected contains the IDs of two proximate devices
as well as the date and duration of interaction. The list of work cell tower IDs
obtained from MIT was incomplete as many students never connected to any
of the cell towers in this list and thus were never considered to be at work. To
resolve this issue, additional work labels were inferred from being in proximity to
each person’s computer; we did not consider being in proximity to one’s laptop
as being at work due to the mobile nature of the device. We assign a location
label of HOME(H), WORK(W), or OTHER(O) to the 32000 cell towers. Towers
which are not labeled as H or W are categorized as O. We have a fourth location
label, NO RECEPTION(N), when there is no tower connection recorded for a
person for a given time (eg. no battery, phone off or no reception).

3 Classifying Daily Routines

We address two classification tasks for daily routines: weekday vs. weekend rou-
tines, and engineering student-like vs. business student-like routines. In both
cases, the input data is one day of location and/or proximity information.

3.1 Data Representation

The goal is to represent a day using location and proximity information that is
discriminant to daily pattern classification. A day can be represented at multiple
time scales, and people’s routines usually follow block-type schedules. In this pa-
per, we quantify location and proximity information at two levels (one fine-grain
at 30 minutes and one coarse-grain at 3-4 hours). These two time scales provide
a simple model of time management that is appropriate, in our opinion, to char-
acterize many people’s lives. For location data, keeping in mind the H, W, O, N
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Fig. 1. a) Visualization of location patterns using the fine-grain location representation,
L, for 2 users over 121 days. Each row in the graph represents a day in the life of
the individual. The labels H, W, O, N represent home, work, other, and no reception
respectively. The day is divided into 48 fine-grain (30 minute) timeslots, each with a
location label. The user on the left has a rich set of routines visible in the location
patterns, whereas the user on the right is mostly incomplete due to lack of celltower
labels. b) The proximity representation, P, is visualized for a user. Only proximity
with users in the group are considered. Each row in the graph represents a day in the
life of the user. The day is divided into 8 timeslots, each with 3 elements indicating the
quantity of proximate users for that timeslot. For this user, most proximity activity
occurs later in the day for most days.

labels, in addition to time considerations, useful information may be contained
in the quantity of these locations present in a day, or the dynamics in which
they occur (for example, work often follows home). Further, for proximity data,
sources of useful data include the identity of the person with whom a user was
proximate, the number of proximate people (quantity of proximity disregarding
the user’s identities), as well as time considerations. These features motivated
the various location-driven and proximity-driven representations presented next.

Location Representation

L, Fine-Grain Location. For the fine-grain location representation, visualized
in Figure [l and 2 a), a day is divided into 30 minute non-overlapping time
intervals, resulting in 48 blocks per day. We assign a location label of W, H,
O, or N to each 30 minute block. For classification purposes, this 48 element
vector was transformed to binary format. Note that over a 30 minute inter-
val, typically several cell tower connections are made, often with continuous
fluctuations between a few. To address this source of noise we select the cell
tower with the maximum connection time over each 30 minute interval.

Ly Bag of Location Transitions. This representation was built from the fine-
grain location representation considering 8 coarse-grain timeslots in a day.
A location word contains 3 consecutive location labels presented for the fine-
grain representation corresponding to 1.5 hour intervals followed by one of
the 8 timeslots in which it occurred. Thus a location word has 4 components,
3 location labels followed by a timeslot. We take overlapping 1.5 hour sets
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Fig. 2. a) Fine-grain location representation, L, visualized over the entire set of days
and users in the study. The x axis corresponds to the 48 half hour time intervals in a
day. The y axis corresponds to a given day of a user in the dataset. b) Coarse-grain
location representation, L., visualized over all days and users. ¢) UserlD proximity, P,
displayed over all users and days.

Lg

of labels to make a location word, so that if we had a pattern HHHOW
in timeslot 1, we would have the following location words: HHH1, HHO1,
and HOW1. The bag of location transitions is the histogram of the present
location words in the day.

Coarse-Grain Location. For this representation, visualized in Figure 2] b),
a day is also divided into 8 coarse timeslots. For each timeslot, there is a
binary element representing the four location labels (H, W, O, N). If one of
these labels was present within the given timeslot, it is counted as one, if
this location was not present, it is counted as zero. This is a simplification
of the bag of location transitions, in which the dimensionality was reduced
to be comparable to some of the proximity representations described in the
next subsection.

Two-Feature Location. This representation is the simplest, in which the num-
ber of 30-minute H and W labels are counted without taking into account
when exactly they occur in a day.
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Proximity Representation

P, UserID Prozimity. The userID proximity representation is also illustrated in
Figure 2l c). There are 31 binary components for a given day, reflecting the
30 people considered in this study (see Section 4.1), and the last component
for the case when no one is in proximity. If the person was in proximity with
one of the 30 individuals, the value for that component will be one; for days
when the person is not in proximity with anyone, the last component will
be one. Thus, we only consider proximity within the set of 30 people. We do
not consider a person to be in proximity with oneself.

P, Coarse-Grain Prozimity. The coarse-grain proximity representation, visual-
ized in Figure [ b), contains again the same 8 timeslots in a day. In this
description of proximity, the identities of people are disregarded and only
the quantity of proximate people for a timeslot is considered. In the first
timeslot, the first element is one if 1 to 2 people are in proximity, the second
if 3 to 4 people are, and the last if 5 or more people are in proximity. The
resulting representation contains 8 timeslots, each with 3 elements. This idea
of binary quantization is repeated over the 8 timeslots giving a quantification
of interaction within the total set of people over different times in the day.

P, One-Feature Proximity. This is the simplest representation for proximity. We
count the number of proximate people for a person within a day, and use
this value.

Combined Representation. For the combined representation, we concatenate
one of the location representations with one of the proximity representations. In
this paper, we only consider cases with comparable location and proximity di-
mensionality. Feature extraction techniques (e.g. PCA) could have been applied
on the joint representations but were not explored here.

3.2 Classification

The classification was performed using a support vector machine (SVM) with a
Gaussian kernel. For both daily routine classification tasks (days as weekends or
weekdays, or days as belonging to business students or engineering students), the
training strategy was leave-one-user-out, specifically testing on all the days for
one unseen person while training on the data for all other people (note: proximity
features are by definition relational involving pairs of people); we tested on each
of the people and averaged the results. We optimized the kernel parameter on
one data split for a randomly chosen person.

4 Experiments and Results

4.1 Data Set

From the Reality Mining data set, we experimented with 30 people and 121
consecutive days, resulting in approximately 3600 data points. Our choice was
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guided by the goal of analyzing people and days for which data was reasonably
available. The exact dates in the experiment were August 26, 2004 to December
24, 2004. The people selected had the most number of days with at least one W or
H label. We removed days which were entirely N (no reception) labels since these
had no useful information, which resulted in approximately 2800 data points. To
select the interval of 121 days, we found the time interval with the most number
of useful days (i.e., days with W, H, or O labels) over all 30 people. The resulting
subset is still massive, amounting to over 87 000 hours, or about 10 years of data,
and remains quite challenging in terms of noise, incompleteness, and complexity.
This is illustrated in Figure [2] where it might be very difficult for a human to
differentiate days as weekends/weekdays, or whether the day corresponds to a
business student or engineering student.

For the student-type daily routine classification task, a subset of 23 of these 30
people were considered based on their student type labels. There were 6 business
school students, and 17 engineering students. The engineering students covered
a broader scope, including both undergraduate and graduate levels.

4.2 Weekday/Weekend Routine Classification

The weekend /weekday classification results are presented in Table [[l and reveal
the difficulty of the task solely based on location or proximity information. In
each table, the classification accuracy averaged over all people is presented first,
and the average accuracy for each class is presented later. Generally, weekdays
are more easily identified with location as input, and weekends are charac-
terised better by proximity data. We can understand this by identifying week-
days with WORK cell towers, and weekends by not being in proximity with
colleagues. However, in this dataset, students appearing to be in W locations on

Table 1. Weekend (WE) and Weekday (WD) daily routine classification accuracy.
The top table shows the difficulty in determining weekends based on location infor-
mation alone. Proximity data is more deterministic of weekend routines. Classification
obtained by combining location and proximity results in the best performance. Signif-
icance values are shown for the most significant results.

Location Accuracy (%) ||Proximity Accuracy (%)
Method|Overall WE WD Method|0verall WE WD

L, 74.2 19.3 95.3 P, 74.3 70.7 75.8
Ly 76.8 44.1 89.1 P, 72 54.2 78.7
L. 76 36.6 90.8 P 74.6 67.9 77.1
Ly 75.7 30 93.1

Combined Accuracy (%)
Method|0verall Eng Bus
(La,P:) 76.9 47.35 88.1
(Le,Pa) 80.3 65.8 85.8
(Le,Py) 79 53.4 89.3
(La,Pa) 76.5 60.2 82.8
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Fig. 3. Advantages of the joint location-proximity representation (L., P,). Visualiza-
tion of a) weekends and b) weekdays for which the proximity-only data was misclas-
sified, but for which the location-only data and the combined proximity-location data
were correctly classified. The sparsity of the weekday proximity-only data (columns
33-56 in b)), resulted in incorrect classification since sparsity in interaction is typical
weekend behavior. However, when we added the location information, the resulting
combined representation was correctly classified. The opposite phenomena can be ob-
served in plot a), for which weekends have abundant proximity data, typical of weekday
behavior.

weekends complicate the classification task, resulting in at best 44.1% weekend
classification accuracy by the bag of location transitions (L), which performs
overall better than the others, also having the highest dimensionality. The coarse-
grain approach L. (fused bag of location words) performs slightly worse for
weekends with a significantly smaller dimension. The fine-grain location repre-
sentation, L,, performs the worst for WE, the best for WD, and slightly better
than the two-feature location case. All methods perform better than a ‘naive’
guess that assumes all days are weekdays, which results in 5/7 = 71.4% accuracy.

Proximity information alone is useful in characterizing weekends, but does
not perform as well as location data for identifying weekdays. There are many
weekdays with little group interaction, resulting in higher confusion with week-
days. The userID proximity and one-feature cases (P, and P.) reveal about 2%
difference between their weekend and weekday performances, overall resulting in
the highest performance of approximately 74%.

The lower panel in Table [Ml shows the improvement in classification with the
combination of proximity and location data. Note that in all cases the over-
all performance of the joint representations improved over that of the singleton
case. We achieved over 80% accuracy with the combined representation (L., P,)
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trading-off 2-3% weekday accuracy for improved weekend classification. In Fig-
ure 3 we visualize the days for which the proximity-alone data (columns 33-56)
was misclassified, however when we added the location data (columns 1-32),
the resulting 56-component vectors were correctly classified. In both figures, the
first 32 columns visualize the location representation L. and the last 24 columns
illustrate the proximity representation P,, so each row displays a day of the
combination (L., Py). Figure Bh) are weekends which performed incorrectly for
proximity-alone data due to the abundance of proximity interactions, which are
not typical of weekends. In contrast, Figure Bb) shows weekdays which were
mistaken for weekends due to the sparsity in interactions, not typical of week-
days. The addition of the location information in both cases resulted in correct
classification, thus illustrating cases for which the combination of information
improved classification performance.

The performance difference between the best location only method (L) and
the best combined method (L., P,) is statistically significant at the 1% level.
The same is true for the performance difference between the best proximity only
method (P.) and the best combined method (L., Py).

4.3 Business/Engineering Student Routine Classification

Effectively classifying daily routines as belonging to business students or en-
gineering students based on proximity-only observations was representation-
dependent. Proximity representation P., the one-feature case, was inadequate
in differentiating between student types, suggesting that the overall quantity of
proximity within each group is on average the same. If the business students
had much more proximity within the total set of people, or vice versa, we could
expect the one-feature case to have higher accuracy. The coarse-grain proxim-
ity representation P, improved the accuracy of business student classification,
however, the userID proximity representation proved to be the best, with al-
most 99% accuracy in engineering student classification and 61% for business
students. The knowledge of identity from proximity is the key for discriminating
student disciplines.

Location knowledge was inadequate in student type determination for the
most part. This is likely due to the simplified representation used where the
32 000 cell tower IDs have been reduced to four location classes. It is expected
that a representation more precisely identifying the location of a student would
perform better. However, the representation used here is useful in understanding
whether student types differ in the amount of time spent at school, home, or out
and about. The two-feature location case, Lg4, having low accuracy, indicates
that the amount of time spent at school and home is not indicative of student
type. The most effective characteristics in differentiating, which can be observed
by the highest performance with the bag of location transitions representation,
might be patterns of “going to work” in a timeslot, or “coming home” in a
timeslot, or other similar routines which are captured by this representation.
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Table 2. Engineering (Eng) vs. Business (Bus) student daily routine classification
results. Proximity within the specific group is most representative of student type,
especially when student identity is retained. The joint location and proximity data
improves classification performance for the (L., P,) combination. However, the other
combinations generally perform as well as the singleton cases. Significance values are
shown for the most relevent results.

Location Accuracy (%)
Method|Overall Eng Bus

Proximity Accuracy (%)
Method|0verall Eng Bus

L, 66.8 90.4 0 P, 89.1 98.9 61.2
Ly 74.54 943 19 P, 78.1 96 28.1
L. 74.5 94.8 17.1 P. 50.2 953 0
Lqg 74.8 99.6 4.5

Combined Accuracy (%)
Method|Overall Eng Bus
(La,P.) | 733 97.6 45

(Le,Py) 89.6 99 62.9
(Le,Py) | 78.76 93.4 37.4
(La,P.) 84.5 95 54.7

The performance difference between the best location only method (L) and
the best combined method (L., P,) is statistically significant at the 1% level.
The performance difference between the best proximity only method (P,) and
the best combined method (L., P,) is not statistically significant.

5 Conclusion

We presented a method to classify daily life routines from massive, complex
data collected with mobile phones. Using over 87 000 hours of data, we achieved
over 80% accuracy in identifying whether a given day more closely resembles a
weekend or weekday. This is not an easy task as students spend many weekends in
work locations and have many weekdays with few group interactions. We showed
that the integration of location and proximity data performed significantly better
than the single observation sources, and that using representations that consider
multiple time scales was beneficial. We further succeeded in identifying whether
a user is an engineering or business student with over 89% accuracy based on a
single day pattern of activity. The identity of individuals, measured by proximity,
was key in this case, which confirms that social context is very helpful to identify
people’s routines. We plan to further exploit this concept for other daily routines
relevant for the analysis of mobile social networks.
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