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Abstract. This paper explores the integration of a perception map
to an agent based model simulated on a realistic physical space. Each
agent’s perception map stores density information about the physical
space which is used for routing. The scenario considered is the evac-
uation of a space given a crowd. Through agent interactions, both in
physical proximity and through distant communications, agents update
their perception maps and continuously work to overcome their incom-
plete perception of the world. Overall, this work aims at investigating
the dynamics of agent information diffusion for emergency scenarios and
combines three general elements: (1) an agent-based simulation of crowd
dynamics in an emergency scenario over a real physical space, (2) a so-
phisticated decision making process driven by the agent’s subjective view
of the world and effected by trust, belief and confidence, and (3) agent’s
activity aimed at building relationships with specific peers that is based
on mutual benefit from sharing information.

1 Introduction

Increasing abundance of mobile communication and sensor technologies accom-
panied by the evolution of mobile computational power suggests that these tech-
nologies may alter the very nature of human communication schemes and infor-
mation diffusion dynamics. This may have a profound effect on the patterns
of human behaviour, especially in the situations in which people rely on the
availability and quality of information.

In everyday situations the existing infrastructure provides information of
adequate quality and in a timely manner and people are typically capable of
accessing the information and adjusting their activities accordingly. However,
many of such pre-deployed systems are not as useful and effective in emergency
situations, like natural disasters or terror attacks. The usual information delivery
channels may be disrupted, and of importance – the information consumers
may require is at an entirely different rate of update and level of detail when
coping with their specific situation. A balance between providing a broad image
simultaneously with the information required locally is crucial. In particular, a
successful evacuation may depend on the underlying physical infrastructure as
well as on coordination. The physical infrastructure adjustments tend to be quite
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costly. Agent based models provide a reasonable solution for agent behaviour
prediction and analysis.

Agent Based Modeling is an important tool, particularly relating to recent
developments in Computational Social Science [1]. For effective, realistic agent
based modeling frameworks, it is of great importance to integrate cognitive mod-
els for social simulation [2]. With the recent revolution in ambient intelligence
and the increasing trend of social media usage for interaction, the need of ex-
ploring social networks in social simulation is evident. Towards this, a social
simulation should model the “process” influencing the buildup of a social net-
work. Consequently, it should also analyze the “structure” a networks evolves
into based on the environment and parameters describing the process. As indi-
cated by Alam and Geller in [3], structure of a social network emerges based on
the modalities of the process. One of the most important modalities of a pro-
cess in social simulation (and social networking within it) is the “connectivity”
between the interacting agents. The connectivity of the agents is dependent on
communication as well as spatial features.

In this paper, we model an agent based framework on a real physical space.
We are simulating the evacuation of the space given a crowd of agents. Agents
make routing decisions towards points of attraction, where we assume once these
points have been reached the agents are safe. The routing decisions are based on a
novel cognitive decision model, which integrates belief, trust, and confidence and
is based on agent communications. Communications occur based on the physical
proximity of other agents and distant communications, simulating phone conver-
sations. The entire process is encapsulated by the agent perception map, which
is the main contribution of this work. Overall, the agent perception map (which
is the agent’s perception of the density of the world, or physical space) contains
the routing information which is updated based on agent communications.

The contributions of this paper are: (1) a novel cognitive decision model based
on trust, belief, and confidence, (2) a realistic simulation framework for crowd
evacuation in an emergency scenario, (3) the encapsulation of a cognitive decision
model for agent routining based on the forumulation of an agent perception map.

Based on our simulation results, we investigate the validity of our model.
Some examples of our findings are that (1) the full communication model results
in a higher number of pair-wise agent trusts given higher degrees of trust, (2)
agents which communicate locally only are able have higher accuracy in their
density perception of the world, though agents with a full communication mech-
anism are able to perceive more density information about the world (have more
perception map information) though with slightly less accuracy, and (3) the node
degree distribution of the evolved trust network exhibits the same overall shape
as a real mobile phone communication network.

2 Related Work

From a networking science perspective, a number of related studies follow Klein-
bergs generative model [4] that explored the emergence of spatially embedded
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networks and their searchability. In particular, Liben-Nowell et al. [5] investigate
the functional dependence of the probability of tie existence on the distance be-
tween LiveJournal users. The effect of a distance on the cellular communication
patterns was explored by Lambiotte et al. [6] at a customer level and by Kings
et al. [7] at an inter-city level. Adamic and Adar [8] explore the geographic
properties of e-mail exchange networks within a company, while Mok and Well-
man [9] focus on how the frequency of offline face-to-face interactions decays
with distance. However, these studies did not directly address the specifics of
the information benefits, geography, details of cognitive processes or the evolu-
tion of trust relationships between the peers typically focusing on the network
structure and the distance as the fundamental underlying mechanisms of the
suggested generative models.

There are many related works in the agent-based modeling community. In
many existing models (e.g., [10]) crowd dynamics are considered from a lat-
tice gas perspective by representing the systems actors by particles interacting
through forces and fields. Although such models are highly scalable, they ignore
(complex) internal dynamics underlying the decision making of actors, and, thus,
cannot be used in cases for which rich cognitive and affective representations are
required (e.g., reasoning, human decision making).

In addition to the importance of integrating the cognitive models into social
simulation in general [2], the importance of human behavioral modeling (cogni-
tive and social) specific to the emergency situation has already been noted [11].
However, in many of these efforts, the cognitive decision making rules are either
very simple [12], or investigated only on an operational level [13]. The strength of
our model is mapping cognition based reasoning on the decision making related
to an evacuation situation from a city. We present explicit relationships (based
on well-established neurological and psychological theories) between intentions
and emotions in decision making.

A few studies [14, 15] investigate the effects of information spread and emo-
tions in crowds. In these studies, no ambient devices for communication over
distance are used. Furthermore, in contrast to the model proposed in this paper,
these studies do not consider trust relations and evolution of social networks.

In [16] an agent-based decision-making model in the context of crowd evac-
uation is proposed, which integrates existing neurological and cognitive theories
of affective decision making. In contrast to our model, this model does not use
crowd density as a decision criterion, and does not consider the evolution of
the social networks. Furthermore, simulation in this study was performed on a
smaller scale.

3 Agent Based Model

Our agent based model is simulated using Repast for High Performance Comput-
ing (Repast HPC) [17] for high performance distributed computing. It consists
of multiple models defining space, mobility, perception, communication, and de-
cision making, all formalized in the following sections.
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3.1 Physical Space

Cells The physical space in which agent movement takes place is taken from
a neighbourhood in a real city in Linz, Austria. A raster image of the map is
incorporated into the model by first reducing it to an area of 500 cells, where
each cell is a unit of space equivalent to 1.25 × 1.25 m2 in reality. The space
referred to as a cell is later used for modeling individual agent mobility and for
assuring two agents do not ‘step on one another’ or overlap in space.

Sectors The map is segmented into 25 equally sized sectors for processing,
where each sector is simulated by a single processor (25 processors in total). The
area simulated and the division into sectors can be seen in Figure 1.

Map Generation For agent mobility on the physical space, the map has to
be converted to a binary grid. In order to achieve this, streets are selected as
walkable areas (agents can move here), and all other areas are considered to be
non-walkable (agents cannot move here). A smoothing algorithm was run over
the space, first horizontally, then vertically, to counter inconsistencies in raster.
The smoothing function is a low-pass filter, with filter coefficients equal to the
reciprocal of the span.

Points of Attraction For the emergency scenario simulation, we consider
‘‘points of attraction” (PoA), where an agent is considered to be ‘‘safe” once
having reached these points. These PoA’s are used in order to evaluate the de-
cision making and mobility modeling. The PoA’s can be seen in Figure 1 (b),
illustrated by the red boxes in the corners of the space modeled. In this pa-
per, the coordinates of the PoAs are provided manually, but in future work, our
approach could easily be extended to handle random PoA generation.

3.2 Mobility

Our agent based model has the capability of modeling different transportation
modes though this would result in an extra dimension of complexity in the
results, so we chose to address one mode of transport for this work. Every agent
requires individual basic routing information in order to move independently,
assuming that all agents are pedestrian. In order to achieve this, we use the cell
floor field method [18] to transfer information to the agent occupying a space at a
given instant in time. This is the main reason for defining a cell (in Section 3.1).
Each cell contains three variables, which are used for agent movement decision
making. These are as follows.

1. Direction: The directions of each of the PoAs from the current cell. We
refer to this feature as the direction of motion (DOM). Each DOM ranges
from 0 to 355.99, calculated as the relative angle between the current cell
and the cell containing the PoAs.

2. Distance: The physical distance to each of the sectors containing PoAs
from the current sector, referred to as the hop count (HOPC). The HOPC
is computed as the number of cells between the current cell and the cell of
the PoAs.
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(a) (b)

Fig. 1. View of the physical space (also referred to as the world) divided into 25
sectors. The sectors are necessary for efficient processing. Each sector is processed by
an individual processor, and the agent decision making and perception of the world
(described in the next section) is based on these 25 sectors. All white patches represent
streets and are walkable by agents. All other are non-walkables by agents. In (b), a view
with 5000 agents distributed uniformly over the space is visualized, with the points of
attraction shown near the corners with red boxes.

3. Route: The route is the sequence of sectors that need to be traversed by
agents in order to reach each of the PoAs.

An agent makes a routing decision based on a PoA selection, formalized next.

Routing Decision If we define a point of attraction, poA, as a series of sectors
forming a route (R), we can formalize this as R = {IDj1 , IDj2 , ...IDjN } where
IDji is the identifier for sector ji. The subscript of j denotes the index of the
process in the route j. We assume N processes form a given route. We compute
the average density for each route as

ρ(poAj) =

N∑
e=1

ρ(IDje)/N. (1)

The average density is then also weighed in conjunction with distance (d) as:

ω(poAj) = ρ(poAj) ∗ d(poAj) (2)

The point of attraction selected, poA∗, is chosen to be the one with the
minimum weight over the route. Formally,

poA∗ = poAjwithmin(ω(poAj)). (3)

Speed We assume an agents’ speed is affected by the density in its current
vicinity. Therefore, an agent’s speed is density based where the agent is assumed
to know the density of it’s current region (or sector). The formulation for speed
is based on the free flow speed and is given by the following equations:

speed on density = vo ∗ (1−Nagents/Nwalkables) (4)

speed = max{vmin, speed on density} (5)
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where vo = 1.36, Nagents/Nwalkables is the density of a sector and vmin = 0.0136.
Note that speed is not constant and is defined by speed on density.

3.3 Perception

Each agent maintains a perception of the surrounding world and updates it
by collecting information through his “sensors” (i.e. personal observation) and
receiving information via communication from his peers. The perception may
be correct or not. The peers may transfer information by physical proximity
interactions, or based on distant communication means (for example phone calls)
with trusted peers (or friends).

Given this overview, we define a perception map for each agent, where each
agent has a perception of the density in each of the sectors in the world, where
the sectors are the 25 shown in Figure 1. Therefore each agent has a perception
map containing 25 density values, which are updated continuously over time.
In the case of an emergency scenario, the critical feature is the density so that
an agent can reach an exit as quickly as possible. Additionally, the information
source, time of reception and reliability assessment is stored by each agent.
These maps are updated through (1) personal observation (described next) and
(2) communication with other agents (described in Section 3.4).

Personal Observation The personal perception of an agent corresponds to its
natural ability to observe its surroundings. Within a perceptible capability (e.g.
visual and auditory range), an agent is considered to estimate the density around
herself accurately. This personal observation acts as the default density percep-
tion of an agent of its current region, unless “outside” information is received,
either through implicit dispersion due to sharing based on physical proximity
communication, or explicit influence based on distant communication, in which
case the decision model (Section 3.5) is used to update the agent perception
map.

3.4 Communication

Physical Proximity Communication Within an interaction range of radius
R, all agents can interact with each other and share information about their own
perception. The information exchange occurs, however, based on the decision
model in Section 3.5 assuming a radius of range, R = 25 cells.

Distant Communication Distant communication corresponds to the inter-
action between agents without spatial consideration, such as phone calls and
messaging. For the simulations, we assume an agent attempts to contact an-
other towards which she has maximum trust. Once the communication takes
place, the perception maps of both agents would be updated based on the deci-
sion model (Section 3.5). It is possible the communication does not take place,
if the receiving agent has already reached a PoA
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3.5 Decision Model

Very generally, an information source influences the confidence of an information
receiver about the density in a region in proportion to the receivers trust to the
source: the more the receiver trusts the source, the more it adopts the sources
opinion on the density [19]. In emergency situations, people usually have little
time and limited access to information to elaborate well possible decision options.
Furthermore, available information is often contradictory, partial and outdated.
Under these circumstances people often use cognitive shortcuts, such as based on
trust. Given this reasoning, we formulate a decision model for our simulations.

The decision making of an agent consists of evaluating the time required
for reaching each known exit. The agents estimation of the total time for each
decision option (i.e., a path to an exit) depends on the agents estimation of its
average speed for each sector on the path to the exit:

total timeag(path) =
∑

s∈path

lag,s(t)

vag,s(t)
(6)

The agents estimation of the length of the section lag,s(t) of the path confined
within sector s and of the average speed in the sector vag,s(t) are updated based
on the agents own observations and information about the crowd density in the
sector received from other agents.

Information about the densities of regions are updated by decision making
model. The higher the confidence value of the obtained information and the
higher the trust of the agent to the agent-informer, the higher would be the
effect of the obtained information on the agents beliefs:

B∗ρr,j =
Cρr,iTj,iBρr,i + Cρr,jBρr,j

Cρr,iTj,i + Cρr,j
(7)

where Tj,i is j’s trust towards i, and ∗ represents the value at the next iteration.
Furthermore, Tj,i is updated as:

Tj,i∗ = Tj,i + α(Cρr,j
1

1 + e−γ|Bρr,j−Bρr,i|+β
− Tj,i) (8)

where B is the belief, T is the trust, C is the confidence, and α, β, and γ are
constants. We assume Cρr,i is the confidence agent i has about the about the
density in region ρr. We assume an agent i communicates this density informa-
tion to another agent j.

Agent js confidence is then updated as follows:

C∗ρr,j =
Cρr,iT

∗
j,i + Cρr,jT

∗
j,j

T ∗j,j + T ∗j,i
(9)

We assume every agent fully trusts themselves, therefore T ∗j,j = 1.
For simulation results, we assume α = 0.8, β = 5 and γ = 10. Note, α is

the rate of change of trust - a personality characteristic indicating the agents
ability or willingness to change its state. β and γ are the steepness and threshold
parameters of the logistic function, respectively. The values β = 5 and γ = 10
were chosen experimentally to reflect the following dynamics of trust:
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– the agents gain high values of trust (> 0.7) slowly;
– a low level of trust (< 0.3) grows slowly with every positive experience;
– the average trust values ([0.3, 0.7]) vary rapidly.

Motivation for Trust Agents associate trust with every relationship they have.
Trust is an attitude of an agent towards an information source that determines
the extent to which information received by the agent from the source influences
agents belief(s). It takes values in the interval [0, 1]. The higher the trust to an
agent, the higher the extent to which information provided by that agent is used
in the decision making ([19]). The trust to a source builds up over time based
on the agent’s experience with the source. In particular, when the agent has a
positive (negative) experience with the source, the agent’s trust to the source
increases (decreases). An information experience with a source is evaluated by
comparing the information provided by the source with the agent’s beliefs about
the content of the information provided. The experience is evaluated as posi-
tive (negative), when the information provided by the source is confirmed by
(disagree with) the agent’s beliefs. This assumption is supported by many ex-
perimental evidences, which demonstrated that trust correlates positively with
similarity of agents (e.g., similarity of interests) [20, 21].

4 Experiments and Results

4.1 Simulation Scenario

For simulation results, we generate 5000 agents randomly, spread evenly over
the walkable areas on the map (world). Therefore, each sector gets a fraction of
agents equal to its walkable count over the total walkable area count. Our results
are evaluated based on two scenarios.

1. proximity comm: The first evaluation of our models considers a scenario
where communication only occurs based on physical proximity interactions.
In this scenario there are no distant communications (defined in Section 3.4).

2. full comm: The second agent based model simulation considers a full com-
munication model, where agent interactions occur both based on physical
proximity as well as distant communications.

Of the many features simulated, we found the most critical to be the trust
formations, the agent perception maps, as well as the distribution over exits,
which is the focus of the results presented.

4.2 Trust Development

In order to evaluate the development of trust across the agents, we consider a
network of trust. The nodes of the network are agents and the directed edges
symbolize trust, where the weight of an edge is the amount of trust an agent
has towards another. In order to understand the overall amount of trust in the
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Fig. 2. The average agent node degree in the trust network plot as a function of degree
(or amount) of trust. The network consists of agents as nodes and edges representing
the degree of trust. In (a) the node degree is plot at the 15th iteration of the simulation
(over a total of 50 simulations). In (b) the node degree is plot at the mid-point. In both
cases, we can see there is a higher node degree for higher degrees of trust (indicating
there is more trust in a full communication network). However, there is a higher node
degree for lower degrees of trust given proximity only communication.

network, we consider the overall average node degree as a function of the degree
of trust. More specifically, we consider the node degree for which the edge weight
is greater or equal to x, as a function of x, where x is the degree of trust. These
results are shown in Figure 2, where (a) is approximately the 1/3 point in time
of the simulation and (b) is the mid-point of the simulation. We consider these
points in time since these are the critical points at which agent interactions
have taken place and the decision for PoA selection is vital at these instances.
After the mid-point many of the agents reach their chosen PoA and therefore
the simulation is stabile and the trust dynamics are no longer visible. Overall,
the results in Figure 2 indicate that a full communication mechanism results in
a higher number of pair-wise agent trusts given higher degrees of trust.

In Figure 3 we further make a comparison of (a) the overall distribution of
the network of trust node degree from our agent based framework to (b) that
of a real-life mobile phone data collection. The details of the mobile phone data
collection and network data analysis can be found in [22]. In Figure 3 (b) we
consider the overall static network of phone communications of the participants
in the dataset and plot the average node degree as a function of the number
of calling events (edge weight). Both plots in (a) and (b) are presented on a
log-log scale. Very generally we observe their shapes to be similar, serving as
a validity check for our trust model. We can conclude the network of trust
developed by our agent based model generally follows a similar trend to a real
phone communication network, where we assume phone communications occur
between trusting individuals, with information exchange as is the case for the
trust network.
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(a) mid-point (b) real data
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Fig. 3. Comparison of the average node degree as a function of edge weight for (a) the
agent based model trust network at the mid-point of the simulation (b) the node degree
of a real communication network taken from a large scale mobile phone data collection.
This result serves as a general validity check to determine whether the network shape
corresponds to that of a similar real-network.

4.3 Perception Maps

In order to evaluate the agent perception map data, we evaluate the degree to
which each agent’s perception of world is similar to the actual world informa-
tion, which is the density of a sector. For this evaluation, we accumulate over
all of the agents, the difference between the actual density and the perceived
density (|ρactual − ρperceived|) for which the difference is greather than a thresh-
old, Th. The results presented in Table 1 are computed over the total number of
agents, iterations and sectors, resulting in the evaluation of the overall number
of perception maps in the simulation.

Overall, we find that agents which communicate locally only are able have
higher accuracy in their density perception of the world, though agents with
a full communication mechanism, including both local and distant communica-
tions, are able to perceive more density information about the world (have more
perception map information) though with slightly less accuracy.

4.4 Exiting Behavior

We plot the number of agents per point of attraction over time in Figure 4 to
see how agents distribute themselves differenly in both simulation strategies. We
observe that in the full communication simulation scenario, before the mid-point
there is a more even distribution of agents to the PoAs (labeled as exits in the
figure). This difference is subtle and can ben seen by the difference in the green
curve between the figures at the mid-point.
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(a) Proximity Communication (b) Full Communication (b)-(a)
Th |ρactual − ρperceived| |ρactual − ρperceived| difference

0.005 3764170 3742735 -21435
0.01 4219515 4206839 -12676
0.02 4903318 4907265 3947
0.03 5128701 5133970 5269
0.035 5228494 5239598 11104

Table 1. The number of perception maps with |ρactual − ρperceived| < Th, where the
difference between the perceived density by an agent and the actual density is evaluated
over different thresholds. The number of perception maps are computed over all the
agents, sectors, and time steps. These results indicate that the full communication
model results in overall more informed perception maps (as seen by Th = 0.035).
However, when considering the least amount of error in the perceived density (Th =
0.005), the proximity only communication is more effective.

Fig. 4. The number of
agents having reached a
PoA (labeled as exit x) over
time. In the full communi-
cation scenario, before the
mid-point, the four points of
attraction are more evenly
reached. This can be seen
by the spreading of agents
from the PoA in green (exit
4) to other PoAs.

5 Conclusion
We present an agent based simulation framework to model the dynamics of
agent perception and explore the effect of communication on crowd dynamics in
the context of evacuation. We present a new model defining a belief, confidence
and trust mechanism which forms the basis for agent movement decision making
based on the agent density perception map. We have found a full communication
model to be advantageous to a local communication model since agents can have
a larger overall number of agent perceptions about the world, and can result in
a larger number of highly trusted pairwise relationships.
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