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Abstract—There is relatively little work on the investigation of
large-scale human data in terms of multimodality for human ac-
tivity discovery. In this paper, we suggest that human interaction
data, or human proximity, obtained by mobile phone Bluetooth
sensor data, can be integrated with human location data, obtained
by mobile cell tower connections, to mine meaningful details
about human activities from large and noisy datasets. We propose
a model, called bag of multimodal behavior, that integrates the
modeling of variations of location over multiple time-scales, and
the modeling of interaction types from proximity. Our representa-
tion is simple yet robust to characterize real-life human behavior
sensed from mobile phones, which are devices capable of capturing
large-scale data known to be noisy and incomplete. We use an
unsupervised approach, based on probabilistic topic models, to
discover latent human activities in terms of the joint interaction
and location behaviors of 97 individuals over the course of ap-
proximately a 10-month period using data from MIT’s Reality
Mining project. Some of the human activities discovered with
our multimodal data representation include “going out from 7
pm–midnight alone” and “working from 11 am–5 pm with 3–5
other people,” further finding that this activity dominantly occurs
on specific days of the week. Our methodology also finds dominant
work patterns occurring on other days of the week. We further
demonstrate the feasibility of the topic modeling framework for
human routine discovery by predicting missing multimodal phone
data at specific times of the day.

Index Terms—human activity, human mobility, Reality Mining,
topic models.

I. INTRODUCTION

C ELL phones are rapidly emerging as the ultimate mul-
timodal sensor of human dynamics and behaviors [11].

Equipped with GPS, Bluetooth, accelerometers, cameras, and
microphones, current phones have the potential of tracing mul-
tiple forms of data at scales previously unattainable. This data
has the potential of enabling the design of new human-cen-
tered applications related to people’s daily life, thus opening a
whole scope of problems in multimodal integration and ubiq-
uitous computing [4], [16], [19], as well as enabling the under-
standing of human interactions, movements, and behaviors, and
how these impact each other, as never before.
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Two fundamental problems in this domain relate to routine
modeling: how to discover recurrent patterns in a person’s life
from multimodal data like proximity, location, and motion, and
how to predict, based on the knowledge of a person’s routines,
her most likely routines at any given time. On one hand, pat-
tern discovery via unsupervised learning is often a necessity,
given the potentially large number of relevant routine patterns
of an entire population and the huge amount of unlabeled data
that can be recorded with a phone over time [7], [8]. On the
other hand, predictions from aggregated user observations are,
arguably, some of the most useful outcomes of routine mod-
eling, by inferring both where and with whom a user would most
likely be in the future (for anticipation) or would most likely
have been in the past (for cases of missing data).

While recent works have started to analyze both problems
from location or proximity data—discovery and prediction in
[7], discovery in [8]—one aspect that has not been investigated
in depth is the role of multimodal integration in large-scale rou-
tine analysis. More specifically, how does the joint use of mul-
tiple modalities (e.g., location and proximity to others) enhance
the understanding of a person’s routines, and how can this be
efficiently represented and automatically inferred? Proximity to
known people (as a coarse approximation of face-to-face inter-
action) adds a rich element of social context that is very useful
to complement or disambiguate many situations in daily life.
For instance, being at home alone or with a large group having
a party represent entirely different social situations, that would
be nevertheless identical from the sole perspective of location.
Such finer descriptions of routines based on multiple cues are
clearly important to characterize users and their habits.

This paper presents an approach for large-scale unsupervised
learning and prediction of people routines through the joint
modeling of human location and proximity interactions. Our
work has four contributions:

1) We present an approach to jointly model a user’s loca-
tion, interactions, and time data in a manner suitable for
robust human activity mining from large-scale noisy data.
We propose a bag of multimodal behavior, that integrates
the modeling of variations of semantic location over mul-
tiple time-scales, and the modeling of interactions types
from Bluetooth proximity. Our representation is simple yet
robust to noisy and incomplete real-life mobile data.

2) We present an analysis of the proximity interactions oc-
curring in the Reality Mining data [7] which depicts MIT
Media Lab and business students, considering both dura-
tions of interactions with fellow lab-mates as well as all
other Bluetooth devices.

3) We use a probabilistic topic model, namely Latent
Dirichlet Allocation (LDA), to mine the dominant multi-
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modal human activities occurring in the Reality Mining
data, including typical human activities such as “being at
home in the morning with another person.” Upon closer
analysis of the results, we are able to find routines occur-
ring dominantly on certain days of the week to inform us
of activities such as “being out Friday evening with a large
group of lab mates.”

4) We present a method to predict missing multi-modal sensor
data, in this case joint location-proximity data over several
hour intervals. The prediction task further confirms the fea-
sibility of the joint location-proximity routines discovered
as topics for data prediction.

This paper is organized as follows. In Section II, we present
the most related works on large-scale human sensor data with
focus of human activity modeling. We then present our frame-
work in detail in Section III, followed by our experimental re-
sults and analysis in Section IV. Finally, the paper is concluded
with some ideas for future work.

II. RELATED WORK

The mobile phone is a very unique device continuously
capturing our location, interaction, communication, and motion
traces continuously left behind in our daily lives [16]. Re-
searchers are just beginning to understand the implications of
such data collections for fields ranging from epidemiology [24]
to dynamical network analysis [14]. The research most relevant
to ours is in the field of human activity modeling.

There is an increasing body of work on activity recognition
using various types of wearable sensors (not involving mobile
phones). For example, in [21], wearable electronic badges mea-
sure the amount of face-to-face interaction, conversational time,
physical proximity to other people, and physical activity levels
in order to capture individual and collective patterns of behavior.
Their goal is to understand how patterns of behavior shape indi-
viduals and organizations. Other authors [15] use two wearable
sensors, one placed on the right hip and one on the right wrist
of a person, to recognize user daily routines such as “driving a
car,” and “washing hands.” The method uses topics models and
is tested on a few weeks of data obtained by one user. Their
technique, however, would not be directly applicable to mobile
sensor data since it uses body part sensitive human motion fea-
tures of the wrist and hip as opposed to features directly ob-
tainable by mobile phones that can be worn in pockets, bags,
or backpacks. Recently, mobile phones have been modified to
capture nonlinguistic speech attributes [19], [20]. These non-
verbal speech features have been used for sound classification
(for example music versus voice) and for the discovery of sound
events [19]. In [20], these features, in addition to others obtained
by mobile phone sensors, are used to characterize social inter-
actions such as personal relationships at the workplace or in pri-
vate.

Mobile phone call data has been analyzed at large-scales in
[3] and [11] to understand human dynamics. Human mobility
patterns have been modeled from location data obtained when-
ever phone calls were made in [11], to find that human trajec-
tories are highly regular in terms of both temporal and spatial
characteristics. In [3], phone call data has been used to study
the mean collective behavior of humans at large scales, focusing

on the occurrence of anomalous events. The authors also in-
vestigate patterns of calling activity at the individual level and
model the individual calling patterns (time between phone calls)
as heavy tailed. In [5], missing data in activity logs are filled
using sequence alignment techniques.

There are several works related to activity modeling from
location-driven phone sensor data. CitySense [18] is a mobile
application which uses GPS and WiFi data to summarize
“hotspots” of activity in the San Francisco area, which can
then be used to make recommendations to people regarding,
for example, preferred restaurants and nightclubs [23]. Liao
et al. [17] use GPS data traces to label and extract a person’s
activities and significant places. Their method is based on
Relational Markov Networks. Eagle and Pentland [7], the
pioneers in the Reality Mining research domain, used principle
component analysis (PCA) to identify the main components
structuring daily human behavior. The main components of
human activities, which are the top eigenvectors of the PCA
decomposition are termed eigenbehaviors. Our previous work
[8] builds on the initial ideas in [7], though we propose the
use of probabilistic topic models and develop flexible feature
bags to capture human routines in a robust manner (i.e., small
variations in daily activities will not affect results though they
might result in eigenbehavior changes). Our method also had
the advantage of capturing characteristic trends occurring
over part of the day (such as early morning only), whereas
eigenbehaviors capture features over the entire day.

To our knowledge, relatively few works have focused on
large-scale human activity modeling from proximity or multi-
modal mobile sensor data. There are some works by Pentland’s
group [20], [21], using multimodal data, though the critical
features for these works are nonverbal audio features which
would not be readily available from most off-the-shelf mobile
devices. In [6], a dynamic proximity network is modeled and
analyzed to find the properties of human interaction dynamics.
In [24], a study of how mobile phone viruses spread investi-
gated joint location and proximity mobile phone data, though
the focus of that work is to the application of epidemiology
rather than to the mining of routines as we do here. Recently,
we did a preliminary study on Reality Mining data, where we
investigated human activity patterns from multimodal mobile
data, considering both location and proximity data [9]. This
paper extends that initial work by providing further details
and analysis of the data and results. More specifically, this
paper introduces the concept and methodology in more details.
Further, we introduce a detailed analysis of user interactions
within the group and with other Bluetooth devices and compare
the interactions of two different subpopulations. We also extend
the multimodal routine discovery to consider factors such as
the day of the week, leading to the discovery of work patterns
dominating on Sundays versus Mondays, for example. We also
present an investigation of user entropy to differentiate varying
types of individual behaviors.

III. MULTIMODAL FRAMEWORK

We use the Reality Mining (RM) dataset [7] for which the ac-
tivities of 97 students and staff at MIT were recorded by Nokia
6600 smart phones over the 2004–2005 academic year. Given
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Fig. 1. Overview diagram of our method. The data captured by mobile phones (where a user is as well as with whom) is combined to form a joint location-
proximity representation. After the multimodal data representation is transformed to a bag of words, Latent Dirichlet Allocation inference is applied to reveal
latent topics (or discovered routines), corresponding to common user places and interactions. Each routine is characterized by its top multimodal words ranked
by their probability.

a day in the life of a person in terms of where they go and the
number of people within the group they are in proximity with,
our goal is to discover routines from large-scale multimodal
phone data. Further, we use the combined location and prox-
imity routines discovered to predict missing location and prox-
imity data. An overview of our method is visualized in Fig. 1.
We represent a day in the life of a user in terms of where they
are over a 90-min time interval as well as the number of people
they are with during this time interval within the RM popula-
tion, forming a joint location-proximity data representation, de-
scribed next. This joint data representation is input to the Latent
Dirichlet Allocation (LDA) model, from which human routines
are discovered, representing common forms of social interac-
tions which occur at varying locations.

A. Joint Location-Proximity Representation

The joint location-proximity data representation is based on
the concatenation of data corresponding to users’ location, prox-
imity, and a timeslot indicating a coarse-grain measure of the
time of day for which this data is measured. The details follow.

Location Representation: Following Eagle et al. [7], a given
individual’s locations (given by cell towers) is represented over
the course of a day by representing all possible locations into
four categories, namely work (W), home (H), out (O), and no
reception (N). W are the MIT work premises, H are the homes
of individuals, and O are towers that are not H or W, thus en-
compassing a large number of places. The W and H labels can
be, in general, easily obtained from user tagging of cell towers
or from knowledge about the data collection campaign. N is a
label used if there is missing data for a person for a given time,
for instance when the phone is off. The basic idea for the lo-
cation representation, which is taken from our previous work
[8], is to assign a single location label (H, W, O, N) for each
30-minute time interval of a user’s day, resulting in 48 location
labels for each user and each day. The use of 30-minute slots,

synchronized on the hour, is a simple yet robust assumption, as
many people and organizations schedule their life around this
type of day segmentation. Also, the data is quite noisy and chal-
lenging, and this representation aids with some sources of noise,
such as the numerous fluctuating cell tower recordings. To as-
sign a single label to a 30-minute slot, we compute the time of
occurrence for all location labels within the slot, and assign the
one with largest duration. Then, three consecutive 30-minute la-
bels are taken to obtain location transition information over a 1.5
hour period in a day. These 1.5-hour intervals are overlapping,
resulting in 48 1.5-hour 3-label location sequences in a day.
We use 1.5-hour intervals in order to capture transitions in user
movement.

Proximity Representation: For proximity data, we use the
Bluetooth readings to consider proximity with people in the
Reality Mining group. Bluetooth can detect other similar de-
vices located within a 10-m radius. Bluetooth is a reasonable (al-
though clearly imperfect) proxy for social interactions, though
there are various sources of noise making it challenging to work
with. On one hand, we could expect that people actually in-
teracting will often be sensed by Bluetooth but many cases of
nearby people who do not interact will be detected too. This
is a limitation of the Bluetooth modality. Proximity in general
could be considered as proximity to laptops, computers, and
other people, is also recorded in the data, but it is difficult to
distinguish them from mobile phones. We quantize the number
of proximate people into four prototypical groups: user is alone,
dyad (one person in proximity), small group (two–four people
in proximity), large group (five or more people in proximity).
The group sizes are motivated by research in social science that
has traditionally analyzed dyads, small groups, and large groups
as separate categories, as they present distinct dynamics [10].

Timeslot Division: Each day is divided into eight coarse-
grain timeslots as follows: 0–7 am (1), 7–9 am (2), 9–11 am
(3), 11 am–2 pm (4), 2–5 pm (5), 5–7 pm (6), 7–9 pm (7), 9–12
pm (8). These timeslots were chosen to capture common events
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Fig. 2. Gibbs Sampling algorithm for LDA.

in daily life, such as lunch time, dinner time, or morning and af-
ternoon work times. Other time intervals could equally be used
to capture events occurring over finer or coarser daily periods.

A day in a user’s life is finally represented as a multimodal
bag of words, where a word is a location sequence, concate-
nated with the corresponding proximity group and a timeslot, as
shown in Fig. 1. The bag of word model is amenable for prob-
abilistic topic modeling which is introduced in the next subsec-
tion.

B. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised proba-
bilistic generative model that was initially developed to charac-
terize text collections, but can be extended to other collections
of discrete data [2]. A word is a basic unit of discrete data de-
fined by an item for a vocabulary of size . A document is a
bag of words, and a corpus is a collection of documents.
Each document is viewed as a mixture of topics, where topics
are distributions over words. The probability of a word in a
document, assuming it is generated from a convex combination
of topics, is given as

(1)

where is a latent variable indicating the topics from which the
word was drawn. In LDA, a Dirichlet prior is assumed on
the topic distributions to provide a complete generative model
for documents [12]. The graphical model for LDA is shown in
Fig. 1.

The objective of LDA inference is to determine the word dis-
tribution for each topic , and the topic

distribution for each document . We use
the approximation derived in [12] based on Gibbs sampling. In

LDA, and are assumed to be Dirichlet distributions
with hyperparameters and , respectively. The Gibbs sam-
pler is used since exact inference is intractable [12]. Let
and be the number of times word and document have
been assigned to topic , respectively. Let and

denote the sums of words in a given topic, and
of topics in a given document, respectively. Let denote the
set of words in the corpus, and denote the set of topics in the
corpus, and denote excluding the current topic element

. In practice in the Gibbs sampler, we sample from

(2)

(3)

(4)

using the procedure summarized in Fig. 2. In the above equa-
tions, denotes the counts of the elements jointly contained
in the subscript and superscript, excluding the current element
. The topic assignments, and are initialized ran-

domly. In each Gibbs sampling iteration, the topic assignments
for a word and a document are sampled from (4). After a
predefined number of iterations (i.e., after the burn-in time of
the Gibbs sampler), the sampler is assumed to have approached
its stationary distribution [22]. This is a common assumption
in MCMC methods. Essentially, the initialization process ran-
domly assigns words and documents to topics. Then the chain
is run in order to “refine” these assignments according to (4). In
this paper, we use the last sample in the chain for document and
word ranking of topics due to the lack of identifiability problem
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Fig. 3. Algorithm for predicting proximity and location timeslots.

in sampling-based LDA (i.e., there is no guarantee that topics
across samples are the same [22]). The Gibbs sampler results in

(5)

In our work, documents are days in people’s lives and words are
the location-proximity words defined in Section III-A. Topics
are expected to correspond to routines.

In this work, we use LDA for two tasks:
Routine Discovery: We propose to extend the use of LDA

to handle multimodal data, expecting that topics will capture
joint patterns of location and proximity that help disambiguate
relevant cases (e.g., discriminating between a person at work
alone and in a group). Routines can be identified by observing
the top words for a given topic (ranked by their probability) and
also by the top days for a given topic.

Predicting Behavior: LDA is also used for the prediction of
missing labels in a day (i.e., the prediction of users’ joint pat-
terns of location and proximity for certain timeslots). To achieve
prediction, LDA inference is run on the test days containing
missing bits. The algorithm details are presented in Fig. 3.
is defined as the timeslot of a document (a day), where

are the eight coarse-grain possibilities in a day. After
finding topics within the training corpus via LDA, a distribu-
tion of topics for each test document, , is inferred resulting in

. The resulting topics for document are ranked according

to and the best matching topic for document is denoted by
, which is found according to Step 4 in Fig. 3. The result is

a single topic which is used for replacement of the missing data
over the timeslot. To fill in the missing location and proximity
words, we replace the missing labels with those of the top day
for the mostly likely topic selected; , where

is the most probable document given . For the pre-
dicting behavior task (whose results are given in Section IV-D),
experiments are performed over ten chains. Note that the proce-
dure used for behavior prediction described here is simple and
more elaborate methods to predict missing labels could be de-
rived from the output generated by LDA.

IV. EXPERIMENTS AND RESULTS

A. Data and Model Parameters

We experimented with all of the 97 individuals in the RM
dataset and with days ranging from 18.07.2004 to 05.05.2005,
encompassing 291 consecutive days thus extending our previous
work [8] which only considered 30 users. This subset of days
was chosen since these are the days for which proximity data
is mostly available. Days with entirely no reception for location
were not considered since they contain no useful information for
proximity either. The LDA model for joint location-proximity
routine discovery used topics. Heuristic methods were
used to obtain , but generally speaking, a small value of will
produce coarse routines, whereas a large will be much more
specialized. The estimation of the optimal number of topics in
topic models is an active research problem [1], [13]. The hy-
perparameters were set to and . These
hyperparameters are chosen based on standard values used for
text analysis [12].

B. Exploratory Analysis

We performed an analysis of the proximity data to study the
interactions of business students compared to engineering stu-
dents and staff, considering interactions for different days of the
week as well as interactions with others in the same group com-
pared to other Bluetooth devices (not including people in the
group), which could include family members, friends, strangers,
laptops, or computers. The results are illustrated in Fig. 4. The
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Fig. 4. Interaction patterns of MIT business students compared to engineering students and staff. (a) and (b) visualize the pairwise user interactions in terms of
(a) the number of interactions and (b) the total duration of interactions (hours). Business students (1–27) and Media Lab users (28–97) are highlighted by boxes.
There are many interactions between engineering students which do not occur over long durations. The average quantity of interactions over all Sloan business
students versus all Media lab students and staff is computed over the days of the week “S M T W T F S” in terms of (c) the number of interactions and (d) the
total duration of interactions (hours). On average, Media Lab users have more interactions, though on Thursdays business students interact for longer durations,
perhaps due to a course on this day. They also interact less on Mondays, Wednesdays, and Fridays. On average, there is little interaction on weekends in all cases.
The total interaction times (hours) of users with other Reality Mining users in comparison to all other Bluetooth devices are shown in (e) for Sloan students and
(f) for Media Lab users.

entire Reality Mining dataset was considered for these results,
including 16 months of 97 users’ data.

Fig. 4(a) and (b) illustrates the quantity of interactions be-
tween users of the Reality Mining study. Users 1–27 are the
Sloan business students, and users 28–97 are the Media lab stu-
dents and staff. There are two boxes marking the separation be-
tween those groups in Fig. 4(a) and (b). We plot the quantity
of interactions between individuals in terms of (a) the number
of interactions during the course of the study (without taking
into account the duration of interaction) as well as (b) the total
duration of interaction between these users in hours. In both
plots, the amount of interaction (either considering number of
interactions or total duration) was much higher between sev-
eral Media Lab users, in comparison to business students. The
figures have been adjusted to visualize the interaction between
business students as well by assigning any interactions occur-
ring over a threshold to the last bin of the colorbar (200 inter-

actions or 150 hours). More specifically, in Fig. 4(a), if there
are 200 or more interactions between a pair of users, this is la-
beled by 200 . The threshold 200 is chosen by rounding up the
maximum number of interactions between business students.
The same procedure is applied in Fig. 4(b) for hours of interac-
tion. The maximum number of interactions throughout the study
occurred between a pair of Media Lab users, and was approx-
imately 585. The maximum duration of interactions occurred
between a differing pair of Media Lab users, and was on the
order of 690 hours over the course of 16 months. Note that these
plots are not symmetric due to the inconsistencies in Bluetooth
and the data collection software. Often times, two people will
be sensed as being proximate only by one of the phones. Fur-
thermore, there are several users without any data recordings.
There are many interactions which occur frequently between in-
dividuals though not for long durations. This is especially vis-
ible between several of the Media Lab users. Also note that in-
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teractions between business students and engineering students
are quite sparse. There are many Media Lab users that never
interact, though most business students (with data recorded) in-
teract, resulting in a much less sparse matrix. There was a pair
of users with negative duration values, likely due to incorrect
clock settings, which was removed.

Fig. 4(c) and (d) plots the overall means of the number of in-
teractions and the duration of interactions in hours respectively,
for Media Lab and business users over the week where “S M T
W T F S” on the -axis corresponds to “Sunday through Sat-
urday.” These average values varied greatly across users. We
can see in both groups of people, the interactions are very low
on the weekends. The mean number of interactions is always
on average higher for Media Lab students on every day of the
week, though it is especially higher on Mondays, Wednesdays,
and Fridays. The duration of interactions for Sloan students is
on average higher than Media Lab students on Thursdays, per-
haps due to a course or business school event on this day.

In Fig. 4(e) and (f), we plot the total duration of user interac-
tions with users in the study compared to “non-user” Bluetooth
devices (or other devices), which could include family, friends,
strangers, laptops, and computers. Fig. 4(e) illustrates the total
interaction times of Sloan users whereas (f) is for the Media
Lab users. In (e) and (f), we can see there are a few people in
both groups who have heavy interactions within the group. Also,
many of the users have more interaction with people in the group
than with “other devices.” Many of the Media Lab users have
heavy interactions with “other devices,” likely due to the fact
that they spend hours in front of their laptops and computers
daily.

C. Joint Location-Proximity Routines

The fusion of proximity and location data enables the dis-
covery of more detailed patterns regarding this group of MIT
users’ daily lives compared to single modalities. After LDA
learning, there is a chance that two topics could be similar to
each other, as LDA does not guarantee that topics be distinct
from each other. The fact that LDA-learned topics are often sim-
ilar to each other has also been observed in the text domain. A
short summary of the learned routines on the entire corpus is
presented next, and a summary is visualized in Fig. 5.

— Home routines and proximity: Most of the home routines
discovered occurred for users alone (i.e., not in proximity
with anyone from the group). Only 2 out of the 20 topics
related to discovered home routines dominated for a pair of
users in proximity. No home routines occurred for small or
large groups in proximity, which suggests that people did
not socialize within the population at home.

— Work routines and proximity: Most of the routines discov-
ered with proximity interactions occurred at work loca-
tions. There are 17 topics corresponding to work routines,
and 13 of them occur with proximity patterns. Routines at
work were discovered for all four proximity groups (users
alone, in dyads, small, and large groups), which indicates
that all these types of interactions occur frequently.

— Morning routines and proximity: Only 3 out of 100 topics
had a proximity interaction in the morning (before 10 am),

Fig. 5. Selected LDA results. The first row of tables correspond to the most
probable words given a topic. Ranked days (i.e., documents) for selected topics
by ����� �, showing (second row) the top 50 days’ location data and (third row)
the corresponding proximity data for a given topic. (fourth row) Histograms of
the users whose days ranked in the top 50 for topic � . (last row) Histograms of
the days of the week �M T W T F S S � Monday to Sunday� that ranked in the
top 50 for topic � . Note the colorbars for the location figures indicating the W,
H, O, and N locations, and for the proximity figures indicating a large group,
small group, pair, or alone.

and all 3 of these routines occur for pairs of users and never
for groups. People interacting in the morning seems to be
relatively sparse for this population.

— Day time routines and proximity: Approximately 20 topics
characterize user interactions throughout the day (10 am–7
pm). The interactions include pairs of users, as well as
small and large groups.

— Evening routines and proximity: 7 topics characterize
group interactions in the evenings (7 pm–midnight).
These occur for pairs of users, and small as well as large
groups.

A selection of topics illustrating the types of joint routines
discovered are visualized in Fig. 5. We have illustrated results
for selected topics, , for the 50 most prob-
able days given those topics. The three most probable words
given the topics are shown in the tables in the first row. We plot
the results in terms of users’ locations (second row), proximity
(third row), user statistics (fourth row), and day of week statis-
tics (fifth row). The figures illustrating the users’ locations and
proximity data show the time of the day as the -axis, and each
row is a day of the life of a user plot in terms of their loca-
tion (H is home, W is work, O is out, and N is no reception)
as well as in terms of their interactions where (“large” corre-
sponds to a large group, and “small” to a small group). Fur-
thermore, a histogram for the users whose days ranked in the
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top 50 documents is shown in the fourth row, the -axis indi-
cating anonymous user id and the -axis the number of days.
The fifth row illustrates a histogram of the days of the week
M T W T F S S Monday to Sunday of the 50 most prob-

able days given each topic. A summary of the routines discov-
ered plotted in Fig. 5 is as follows:

— Topic 11: The user is at work during the day (dominantly
11 am–5 pm as seen from the three top words given topic
11) while in proximity with a small group of 3–5 people.
Several users have days with high probability of topic 11.
This work routine dominates on Mondays.

— Topic 28: The user is out in the evenings (7 pm–12 pm)
alone. This routine occurs most frequently on Fridays for
several users in the study.

— Topic 41: The user is at work from 2 pm–7 pm in a large
group. This occurs dominantly for a handful of users, pre-
dominantly on Thursdays. Note, that most of these users
correspond to Sloan business school students, displaying
their common Thursday afternoon work routine.

— Topic 46: The user is at work in the evening (from 5
pm–midnight) in a small group. This work routine dom-
inates on Sundays and occurs often for a few users.

— Topic 53: The user is at home alone in the mornings (from
midnight until 11 am). This topic hardly ever occurs on
Fridays.

D. Behavior Prediction

We now show how it is possible to use LDA in order to predict
unobserved location and proximity data for a timeslot of a user’s
day. For experiments, we decided to distinguish between people
based on the entropy of their routines under the hypothesis that
prediction of location and proximity will be more or less diffi-
cult depending on the variability of each person’s habits. User
entropy is computed on the distribution of topics given users,

, where is the user variable,
and we assume is the set of users
recorded for user , and is the set cardinality. The topics

correspond to the joint location-proximity routines found in
Section IV-C. All of the users in the dataset are ranked according
to their entropy. After this, we set two thresholds for high and
low entropy which gave ten users in each case. We randomly
picked five people for each class (high and low entropy).

For each of the ten selected users, 20 days of their life were
randomly selected from days with at least one proximity interac-
tion (i.e., days that contained at least one non-empty word over
the entire day). This set of days was used to form the test set,
from which we systematically remove words to generate data
with missing sequences to predict. For each day, the words of
a given coarse-grain timeslot were removed to form a day for
which the method has to predict the missing sequence, thus gen-
erating 8 days, each with one timeslot’s words missing. The re-
sulting dataset for which we predict missing sequences contains
ten users, each with days documents for testing.
Thus, for each user there are 160 documents for testing, and
each coarse-grain timeslot contains 200 documents for testing.

For each document, there is one timeslot with missing loca-
tion and proximity labels. For evaluation, we compute two types

Fig. 6. (a) Average location prediction error as a function of users, where low
entropy users are labeled “Low E” and high entropy users “High E.” (b) Average
proximity prediction error as a function of users. Location label for prediction
is consistently lower for low entropy users. However, for proximity errors are
not necessarily lower for low entropy users.

Fig. 7. Average error in (a) location prediction, and (b) proximity prediction,
as a function of timeslot for low and high entropy users. High entropy users
consistently have higher location label errors for prediction over all times of the
day, though the error is highest between 5–7 pm (timeslot 6) which corresponds
to typical commuting times. The highest errors in proximity label prediction
occur from 9 am–7 pm, corresponding to work times where most interactions
occur.

of error. The location error is the number of incorrectly pre-
dicted location labels divided by the total number of labels to
be predicted in the given coarse-grain timeslot. For instance,
documents with timeslot 1 missing have 14 location labels to
be predicted since it occurs from 0–7 am. The proximity error
is the average number of people wrongly predicted for each
word in a given timeslot. More specifically, if the predicted
group (alone, dyad, small group, large group) is correct then
there is no error. If the predicted group is incorrect, then we
predict the minimum number of possible people in the group
alone dyad small group large group

and compute the difference with the actual number of people
in proximity. For example, if there are ten people in proximity
and we predict a small group, then we assume three people
are in proximity. If this incorrect prediction occurs over the 14
half-hour words in timeslot 1 (midnight–7 am), then the average
proximity error is 7. Finally, the results for location and prox-
imity error are averaged over ten randomly initialized chains of
the Gibbs sampling procedure described in Fig. 2.

The location and proximity errors are computed over users
and timeslots and displayed in Figs. 6 and 7. We present the av-
erage errors as a function of the user for location in Fig. 6(a) and
for proximity in Fig. 6(b). Users 1–5 (in blue) have low entropy
and 6–10 (in red) have high entropy. Interestingly, low-entropy
users have lower error in the prediction of location labels than
high-entropy users. For low entropy users, the error can be as
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Fig. 8. Comparison of our topic model (TM) approach to various other methods
for overall location and proximity errors. PD is the nearest neighbor approach
of replacing data with the previous days’. (a) For the overall average location
error W represents the error obtained if all missing data is replaced by work, O
by other, N by no reception, and H by home. (b) For the overall average prox-
imity error A represents the error obtained if the missing data is replaced by
alone, D by dyad, S by small group, and L by large group. The TM approach
predicts missing location data as well as the PD approach; however, our ap-
proach outperforms the PD method for predicting missing proximity data. The
TM also outperforms all the other methods (both in terms of location and prox-
imity missing data prediction) significantly.

low as 0.32 which nevertheless indicates that the task is difficult.
We also include errorbars corresponding to the standard devia-
tion over the ten randomly initialized chains. High entropy users
are significantly more difficult to predict. In Fig. 6(b), we plot
the proximity error. In the best (resp. worst) case, the predicted
number of people in proximity is incorrect by, on average, 0.16
(resp. 1.2) people. In this case, low entropy users do not nec-
essarily have lower prediction errors in proximity than high en-
tropy users.

In Fig. 7(a) and (b), we plot the average errors as a function
of coarse-grain timeslot for both high and low entropy users
for location [Fig. 7(a)] and proximity [Fig. 7(b)]. We can see
in Fig. 7(a) that for almost every timeslot (with the exception of
timeslot 6), high entropy users are harder to predict (have higher
errors) than low entropy users. Timeslot 6 (5–7 pm, which cor-
responds to typical commuting times) is overall the most diffi-
cult to predict. Also, for timeslots 1 and 2 (midnight to 9 am),
low entropy users correspond to much better performance than
high entropy users. Regarding Fig. 7(b), the error in proximity
prediction as a function of timeslot is again not highly corre-
lated with the entropy of a user. The prediction in proximity has
the highest error in timeslot 5, corresponding to 2–5 pm, and
the lowest error in the mornings and late evenings, which is not
surprising. In the worst case, the proximity error in any given
timeslot is less than 1.25 people on average.

In Fig. 8, we compare the performance of our topic model
(TM) method to several other methods. Fig. 8(a) illustrates
the overall average location error for the TM approach in
comparison to a nearest-neighbor approach called previous day
(PD), which uses knowledge about the specific date of the test
day, and replaces the missing data with that of the previous
day. Note that the date is a very strong contextual cue about
human routines that is not currently used in our method TM.
The approach labeled W is the case where all missing data is
replaced by the “work” location. Similarly, O is the case where
all missing data is replaced by “out,” N by “no reception.”
and H by “home.” Fig. 8(b) illustrates the overall average
proximity error for the TM approach in comparison to the PD
approach, in addition to the approaches labeled A, D, S, and

Fig. 9. Comparison of our topic model (TM) approach with the previous day
(PD) approach in terms of user types. (a) Average location error for low entropy
users and high-entropy users for the TM versus PD approach. The PD approach
performs better for location data prediction for low entropy users; however, our
TM approach performs better for high entropy users. (b) Average proximity
error for low and high entropy users for the TM versus PD approach. In both
cases, our TM approach outperforms the PD approach for proximity data pre-
diction.

L, corresponding to replacing the missing proximity data with
the labels “alone,” “dyad,” “small group,” and “large group,”
respectively. We can see the TM and PD approaches perform
similarly in terms of location data prediction, however, TM
outperforms PD for missing proximity data prediction. The TM
approach also outperforms all the other methods illustrated.

Given the simplicity of the PD method, we look deeper into
the TM and PD performance for various types of users in Fig. 9.
Fig. 9(a) illustrates the average location prediction error for
high and low entropy users. We see that for location predic-
tion, the PD method performs better for low entropy users. This
is understandable since low entropy users have very “routine”
lifestyles and simply replacing the missing data with that of the
previous day results in good performance. However, for high en-
tropy users, our TM method, which captures specific patterns of
transitions (e.g., H to W), is working better. Given these com-
plimentary features, for future work, we plan to investigate a
method that integrates both concepts. Fig. 9(b) illustrates the av-
erage proximity prediction error for high and low entropy users.
The results show that our TM approach outperforms the PD ap-
proach both for low- and high-entropy users.

V. CONCLUSION

We have proposed a probabilistic methodology that success-
fully discovers recurrent patterns in people’s lives from mul-
timodal data, and that can use the discovered routines for data
prediction, estimating location, and proximity data of users with
varying entropy. Essentially, the method mines the most domi-
nantly occurring human routines (topics) from a huge corpus of
real-life human mobile data to determine recurring human pat-
terns involving time of the day, semantic location, and proximity
based interaction type. Our method also uses these rich human
location-interaction topics to predict missing data, which in real
life occurs very frequently with mobile phone data, and can also
be seen as a method to verify the validity of the routines discov-
ered. By computing the entropy of individuals based on their
jointly modeled locations and interactions, our method is able
to predict missing multimodal data over several hours for users
with both low and highly varying lifestyles.

In future work, the methodology for data prediction could
be further optimized to use the topics in a more sophisticated
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manner, and to include prediction on varying timescales, such
as full days of missing data. It would also be very useful to take
advantage of the other, often available data modalities of mobile
sensor data for data prediction. For instance, one could predict
a user’s location given the time of day and their interactions, the
day of the week, or even using their phone call and SMS data.
The Bluetooth proximity data is potentially a very rich source if
one considers proximity to all other devices including laptops,
computers, and anonymous cell phones. This data in itself could
be used to determine the semantic labels of an individual, such
as if the user is at home (in proximity with their home computer),
at work (in proximity with their work computer), or out (in prox-
imity with strangers). In a different line of work, we would like
to enrich the location vocabulary by refining the “other” cate-
gory. This in principle could be done from the Reality Mining
dataset, but handling sparse human annotation of places is in
itself a research problem. Finally, we would like to consider re-
cent approaches like the Maximum-Margin Supervised Topic
Model [25] which explicitly addresses the issue of maximizing
the distance between topics, and may be used to optimize the
number of topics output.
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