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Abstract
The simulation of urban mobility is a modeling challenge due to the complexity and scale. The complexity in modeling a
social agent is due to three reasons: (i) the agent is behaviorally complex itself due to several interrelated/overlapping
modeling aspects; (ii) the setting in which a social agent operates usually demands a multi-resolution approach; and
(iii) the consideration of real spatial and population data is the underpinning that has to be realized. In this paper, we pro-
pose an agent-based parallel geo-simulation framework of urban mobility based on necessary modeling aspects. The
aspect-oriented modeling paradigm relates the models vertically as well as horizontally and highlights the situations
requiring multi-resolution interfacing. The framework takes into consideration the importance of technological foot-
prints embedded with social behavior along with essential space and mobility features keeping focus on the importance
of the city-scale scenario. We have used a real, high-quality raster map of a medium-sized city in central Europe convert-
ing it into a cellular automata (CA). The fine-grained CA readily supports pedestrian mobility and can easily be extended
to support other mobility modes. The urban mobility simulation is performed on a real parallel and distributed hardware
platform using a CA compatible software platform. Considering city-wide mobility in an emergency scenario, an analysis
of the simulation efficiency and agent behavioral response is presented.

Keywords
City-scale evacuation, parallel and distributed simulation, urban mobility, large-scale agent-based modeling, geo-simulation,
computational social science.

1. Introduction

Agent-based modeling (ABM) and simulation is increas-

ingly being used in many disciplines where large-scale

modeling at the entity level is desirable; for example, mole-

cules in physics,1 cells in biological sciences,2 livestock in

ecology,3 natural objects in the environment,4 households in

urban planning,5 and vehicles in traffic engineering.6

Beyond the scientific and economic domains, modeling of

humans in the social sciences, termed computational social

science (CSS),7 has also been a focus of ABM.8 CSS is a

branch of sociology that uses computationally intensive

methods to analyze and model social phenomena. Using

computer simulations, artificial intelligence, complex statis-

tical methods, and analytic approaches such as social net-

work analysis, CSS develops and tests theories of complex

social processes through bottom-up modeling of social

interactions.9

Modeling a CSS application is a challenging task due to

following reasons:

• The social dimension of an individual cannot be

explained without understanding many interwoven

and overlapping modalities rooted in several knowl-

edge disciplines such as human psychology, social

behavior, cognitive science, and economics. Hence,

modeling such a system requires significant social

science knowledge, an often unfamiliar domain for

computer scientists.
• Humans have enormous heterogeneity, ultimately

culminating into an extreme where each human is

different from another. This results in two difficul-

ties: (i) it is nearly impossible to model social rules

having a majority consensus of the theorists; and
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(ii) it is absolutely impossible to introduce as much

heterogeneity in behavior as we observe in daily

life.
• The complexity of understanding social behavior

due to the above two reasons often results in

entirely unpredictable outcomes. Hence, modeling

should be flexible enough to accommodate a phe-

nomena with randomness and unpredictability.

In spite of the challenges faced by CSS, ABM as a plat-

form to investigate and predict a social behavior has rea-

listic potential. This is because ABM allows modeling at

an individual level, allowing as much heterogeneity as

required. The agents adapt their behavior based on local

interactions, possibly culminating into unforeseeable

emergence of properties at the population level, such as

self-organization,10 adaptation,11 and social emergence.12

Traditionally, sociologists have modeled social pro-

cesses as interactions among variables. With the increased

popularity of ABM, the simulation is now focusing on

actors rather than factors.13 The notion of an actor

describes a paradigm shift of modeling social life focusing

on adaptive agents rather than the aggregation of variables.

Agents are behaviorally adaptive in a sense that they influ-

ence others in response to the influence they receive. This

is contrary to the sociologists’ earlier understanding of

social life as a hierarchical system of norms and influ-

ences. In fact, social behavior is mostly complex and usu-

ally not governed by a global system or a macroscopic

model.14 ABM provides a mechanism to model such a sys-

tem at the microscopic level,13 solely based on local inter-

actions among adaptive agents. This can serve two

purposes: (i) it prevents the need for the complex task of

precisely modeling a nonlinear global system; (ii) it pro-

vides an opportunity to model in a bottom-up manner

which is closer to reality. Moreover, a more precise beha-

vior model of an individual can be obtained, whereas a

model of collective behavior is less precise due to the

unknown individual-level behavior producing it.

The following strengths of ABMs make them suitable

for CSS:

• According to Gilbert,14 the main focus of agent-

based models is theoretical development and expla-

nation rather than precise prediction. To do so, the

agents’ behavior must be abstracted to explore pos-

sible explanations that can describe observed phe-

nomena. Thus, one should not be concerned about

realistic assumptions. In fact, if the goal is to under-

stand the fundamentals of a process, ‘‘then simpli-

city of the assumptions is important and realistic

representation of all the details of a particular set-

ting is not’’.15 If agents are more behaviorally

sound, a situation often occurs where we are not

able to explain the results of a model thus under-

mining the usefulness of the ABM.
• According to Macy,13 ABMs are most suitable to

systems that do not require central coordination

imposing an order in a top-down manner. The most

suitable systems are those that can be described by

bottom-up, simple, and predictable local interac-

tions generating ‘‘familiar but highly intricate and

global patterns, such as the diffusion of informa-

tion, emergence of norms, coordination of conven-

tions, or participating in collective action’’. It is

possible that unexpected patterns emerge and then

vanish quickly, such as market crashes and panic in

a crowd. The most suitable systems for ABMs can

be categorized as exhibiting emergence of social

order and presenting social self-organization.

Sociologists have now started to realize the importance

of ABM for exploring the effects of individuals on the col-

lective.15 However, there are three issues worth noting.

1. First, the exposure to new possibilities and enthusi-

asm of exploring more interesting emerging prop-

erties of such a system, have often resulted in

neglect on the models of agents themselves. That is

why in many CSS studies, the microscopic models

used are simple and do not correspond to reality.

2. Second, the restriction of strictly following the

bottom-up order of the influence is not justified in

many cases. For many multi-resolution scenar-

ios,16 simulation requires models of micro as well

as macro scale. This is particularly true for scenar-

ios in which technology is considered to be part of

or related to social behavior.

3. Last, the historical standing of ABM to understand

process fundamentals has resulted in scenario sim-

plification, particularly in terms of agent popula-

tions and environmental modeling. However, with

availability of detailed spatial data (e.g. AutoCAD

designs, Geographic Information Systems (GIS),

satellite imagery), it is now possible to simulate a

realistic space and agent population. Advancements

in parallel and distributed multi-agent simulation

have contributed to this.

In this paper, we focus on the three considerations

stated above. Considering a population of citizens evacuat-

ing the city in case of an emergency, the (social) beha-

vioral ‘‘ingredients’’ influencing such an urban mobility

scenario are condensed into aspects. The modeling of sev-

eral inter-related aspects of human behavior (both individ-

ual and collective) is defined as aspect-oriented modeling

(AoM). The AoM paradigm helps to categorize the inter-

esting dimensions which can/should be modeled in the

given scenario. The AoM approach also provides a
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structured way of distinguishing between microscopic and

macroscopic resolution of an aspect and a mechanism to

resolve this for a hybrid modeling situation. The AoM

paradigm take into consideration the importance of techno-

logical influence on modern living, justifying a case of

agents’ interactions at different scales. Simulation is per-

formed at a real physical and demographic scale after con-

verting a high-resolution city map into grids of cells. The

CA describing the space lets the mobile agents on top be

maneuvered. It also provides a natural way to link an agent

with the real space. However, a city-scale simulation of

this scale in terms of space and number of agents cannot

be handled without explicitly employing a parallel and dis-

tributed simulation (PDS) hardware and software platform.

In this paper, we have taken up a system which can be

categorized as a socio-technical system (STS) for urban

mobility with geo(graphic)-simulation capabilities, which

we refer to as geo-socio-technical-urban-mobility simula-

tion. The simulation framework (Section 4) supports distri-

bution of space for parallel execution and handles a large

population of agents. We consider an city-scale emergency

scenario for applying the framework. The urban evacua-

tion simulation is performed on a shared-memory multi-

process hardware platform using a fine-grained (1:25 m2)

grid-based space incorporated from a real map. The soft-

ware platform is a full multi-agent system compatible with

grid based space. The AoM paradigm (section 3) provides

design principles for the agent model. Section 6 gives a

detailed account of the agent model. The hardware and

software platforms used to perform the simulation are pre-

sented in Section 7. Section 8 is devoted to the simulated

scenario and a discussion on the simulation outcome,

focusing both on agents’ behavior and performance of the

PDS.

2. Related work
2.1. Motivation

When comparing with the simplistic scenario of evacuat-

ing from a building,11,17 simulating a geo-socio-technical-

urban-mobility system has many additional challenges.

There are many types (each considered as a different pop-

ulation) of interacting entities, where each entity can have

its own character and behavior. The social and technologi-

cal interaction may have different modalities as well,

resulting in varying information dispersion based on

extent and periodicity of interaction. Essentially, each such

entity/agent has its individuality which would be reflected

in social relations (both technological and humanistic). In

addition, inclusion of geographical information as an

underpinning space to which each such agent is attached

to adds a new dimension to the level of complexity. In

addition to space being a direct influence to the mobility

of agents, the fact that space may change its state has

consequences on every possible behavior including mobi-

lity. The AoM paradigm presented in Section 3 not only

captures the social-technical dimensions of a crowd-mobi-

lity-based phenomena in its entirety, but also focuses on a

complex embodiment of space at which this phenomena

may occur, i.e. the scale of a city. The modeling frame-

work (see Section 4) describes a formalism where model

variety would be integrated into an agent-based PDS.

Different approaches are used to model different

aspects in a population model (e.g. spared of panic) may

focus on the whole system by collecting observable beha-

vior at the crowd level. Crowd models are often termed

macroscopic crowd models. However, the same behavior

can be modeled on a microscopic level, where individuals

are influenced only by local impact and as a result, a panic

situation emerges. At the macroscopic level, the micro-

scopic level interactions are overlooked entirely. Instead

crowd dynamics are treated as a fluid, with characteristics

such as flow rate, concentration and average speed are all

being functions of 2D space and time. There are advan-

tages and disadvantages to both methods. For example,

modeling a panicked population using a microscopic strat-

egy may involve change in individual behavior due to

social impact (e.g. an individual transiting his phase from

altruistic to a selfish state) which then needs to be locally

‘‘spread’’ in an epidemic fashion. Hence, calculating such

changes, and its impact on surroundings is computation-

ally extensive. If we are only interested in dynamics of

panic in a system, a macroscopic methodology focusing

on global states can be much more efficient. The macro-

scopic models may fall short in those cases where the sys-

tem behavior is inherently stochastic, can be influenced by

the occurrence of single events, is sensitive to the action

of a few individuals, or whenever the average behavior is

not of much interest. Moreover, the modeling aspects are

often vertically and/or horizontally dependent. To resolve

these dependencies and overlapping, it is almost impossi-

ble to combine two or more self-contained macroscopic

models. If all of the models are microscopic, its easier to

combine or interface these. The issue of microscopic mod-

eling lack of efficiency is becoming less of an issue due to

rapid developments of high-performance computing

facilities.

2.2. Multi-aspect modeling

Although the term STS has originated from organizational

structure and work force management,18 it is now being

used for many other domains (including urban activities19)

where there is ‘‘effective blending of both the technical

and social systems’’.20 Fox20 emphasizes the need to deal

with ‘‘social’’ and ‘‘technical’’ aspects inter-dependently

because ‘‘arrangements that are optimal for one may not

be optimal for the other and trade-offs are often required’’.

However, like many other STS studies, the focus of the
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study was only on organizational work flow. For a geo-

socio-technical-urban-mobility simulation, the aspects we

consider are more extensive and specific.

Pan et al.11,17 have argued that individual and social beha-

vior of most crowd agent models in egress is unjustifiably

oversimplified, inconsistent, and incorrect. While presenting

a framework of human decision making and social interaction

for emergency egress analysis, they advocate the necessity of

studying and modeling human and social behavior in more

depth. However, in addition to ‘‘individual’’, ‘‘social’’, and

‘‘population’’ consideration, we also focus on, e.g. ‘‘informa-

tion dispersion’’ and ‘‘space/mobility’’ aspects.

2.3. Multi-resolution modeling

As highlighted in Section 1, the restriction of strictly fol-

lowing the bottom-up order of the influence is not justified

in many realistic settings. Instead there is a trend to have

both methodologies in one simulation. Xiong et al.16 have

presented a simulation framework where microscopic and

macroscopic models co-exist. However, the simulator

switches between the resolutions based on the situation

and the co-existence is not consistent. Xiong et al.21 have

used the concepts of aggregation and disaggregation to

pass on the state from microscopic to the macroscopic

level and from macroscopic to the microscopic level,

respectively. However, the concept cannot be applied to a

large population of agents in a distributed simulation.

Chen et al.22 have extended the concept of aggregation/

disaggregation towards a crowd over a hierarchal grid

architecture. This work has two limitations: (i) the beha-

vioral models are simple (e.g. pedestrians and vehicles

mobility); and (ii) internet based computation distribution

technologies such as HLA_Grid_Repast framework23 and

grid-aware time wrap kernel24 are not suitable for fine-

grained models due to limited bandwidth. The framework

presented in this paper eliminates both limitations.

2.4. Urban simulation

A city-scale, fine-grained, agent-based evacuation simula-

tion is an achievement in its own right. To the best of the

authors’ knowledge, a CA-based city-scale evacuation

simulation with millions of agents has not been attempted

before. In contrast, many large crowd simulation studies

focus only on efficient simulation of only agents ignoring

the spatial dimension of the scenario. Either the agents

have no spatial significance at all25 or these are considered

as networks of agents irrespective of space.26

3. AoM paradigm

In Section 2.1, the aspects important for a geo-socio-tech-

nical-urban-mobility system were introduced, namely,

individual, social, population, information dispersion,

space, mobility, and dynamics of evolution. Here we dis-

cuss these categories under three headings adhering to

how an ABM is formalized, namely, ‘‘heterogeneity’’,

‘‘interaction and adaptation’’, and ‘‘space and mobility’’.

The discussion given below covers the most important

dimensions of the system required to simulate the city-

scale agent-based model for evacuation scenarios.

3.1. Heterogeneity
3.1.1. Agent behavior. Heterogeneity is related with the

individual aspect. This ranges from the physical dimen-

sions of a human being (e.g. body, age, gender, agility

etc.) to personal attributes which can be ‘‘biological’’ and

‘‘cognitive’’. The biological aspects include human per-

ceptions (sense of vision and hearing), whereas, the cogni-

tive aspects include emotions (e.g. models addressing trust

and belief of the agents).

The physical characteristics of individual humans have

significant effect on individual and crowd behavior, thus

mobility. For example, elderly individuals are generally

less agile than younger individuals.27 However, the most

important are personal biological characteristic of an agent.

The sensory perception is the ability of an individual to

sense the environment. These may include the sense of

vision, hearing or touch. In a technologically equipped

urban environment, technology plays a vital role in deci-

sion-making.28–31 That is why we also consider a shared/

public (e.g. an exit sign or a public display) or a private/

personal (e.g. a smart phone) device as an agent. The inter-

action capabilities of such a device is considered a concep-

tual equivalent of human sensory perceptions.

The personal cognitive characteristics are as important

as the biological ones. Some examples of individual cogni-

tive characteristics are:

Instinct: Instinct refers to internal patterns of behavior in

response to specific stimuli. Executing an instinct does not

require a conscious thought process. Examples of human

instinct are fear (hope), survival, smiling. When there is a

need to make decisions under high stress, following one’s

instincts is the most intuitive way.32

Experience/knowledge: An individual often relies heavily

on personal experiences in decision making. Many life

events are highly repetitive. An individual usually develops

a set of relatively standard routines over time and then

applies them to similar situations in the future.

Trust and belief: Belief is individual’s judgment against

an option. Trust is an attitude of an agent towards an

information source that determines the extent to which

information received by the agent from the source influ-

ences agent’s beliefs. The trust to a source builds up over

time based on the agent’s experience with the source. In

particular, when the agent has a positive (negative)
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experience with the source, the agent’s trust in the source

increases (decreases). Trust and belief have an umbrella

effect on all of the behavioral patterns an individual may

have.

3.1.2. Collections and containers. The fact that ABM pro-

vides the capability to create one-to-one correspondence

of real-world actors with virtual agents, defining an agent

itself describes an individual. However, the granularity of

atomicity of an individual is an issue to consider. For

example, taking space description also as an agent, should

we represent a building as an agent or a square cell consti-

tuting a building as an agent? We opted for the second

option. The minimally resolvable description, if opted as

an agent, would not hinder representing a collection of

these as a collective structure. For example, in many simu-

lations that we have conducted, we represented function-

ally collective structures (e.g. an exit) as a collection of

space agents of type exit having assigned the same exit ID.

Many simulation environments define a population as

a special agent group which falls into a class. A population

describes a group of individual related spatially, tempo-

rally, socially or behaviorally. For example, in a morning

rush hour, there would be a high population of school

going youngsters in a train, or during a cultural event, a

high population of tourists is expected in a street. On the

behavioral side, a population has a common goal and

movement pattern which distinguishes it from other popu-

lations. This means that members of such a population are

likely to follow the same social models and may have sim-

ilar individual attributes. We have used concept of breeds

to represent behaviorally similar populations.

The fact that a notion of ‘‘containment’’ may exist

between two breeds of agents, the solution is implemented

using pointers. For example, dozens of people (contained

agents) traveling in a bus (container agent) are contained

within the container through connections. In this case, the

contained agents do not lose their existence or identity.

However, the certain attributes of the contained agents

would be overtaken by the container agent. For example,

in the above example, the travelers would not have any

control over their speed and direction which would be the

speed and the direction of the bus.

3.1.3. Behavioral abstraction. Owing to the existence of

agents as entities at minimal possible atomicity, we face

no difficulty in managing heterogeneity of agents and,

hence, their individualism. However, the interrelation of

model and complexity of the features described above

could be problematic to comprehend if more rationality is

required. As discussed in Section 1, the main idea of ABM

is to explain the phenomena, not to predict precisely. To

this end, the agents’ behavior must be abstracted just

focusing on the core features.

3.2. Interactions and adaptation
3.2.1. Social structures. Interactions between individuals

constitute social behavior. In a STS, the interactions

between agents can be humanistic and technological. The

social aspects are divided into two broad categories: (i) mod-

els which address the influence of social attributes of an indi-

vidual which affect the interaction among individuals; and

(ii) models which describe an information flow or mechan-

ism as a result of these socially influenced interactions.

By viewing a crowd or a group within a crowd as an

emergent structure, we can identify many significant fac-

tors that may contribute to such an emergence. A group

within a crowd is related with localized interactions where

people may behave synchronously or may differentiate

themselves from others. In either case, such a social influ-

ence defines behavior of a group of related people either

moving together, or forming a queue,33 or transforming

into a herd or a jam. It also describes the movement pat-

tern and decision making in case of agents following an

agent with more knowledge (e.g. leader–followers beha-

vior). Mostly emergence of such a group within a crowd

cannot be programmed and it evolves due to localized

agent interactions where different types of agents have dif-

ferent social rules, norms, and values.

3.2.2. Information dispersion. How an agent is ‘‘connected’’

with others influences the information dispersion and col-

lection mechanisms.34,35 We have categorized information

spread into two broad categories: (i) explicit, where infor-

mation is transferred explicitly, e.g. speaking, announcing,

or communicating; and (ii) implicit, where information is

implicitly perceived, e.g. seeing or being influenced. Due

to exceedingly high proliferation of digital devices which

can interact with each other without human intervention,

the interaction capabilities (range and mode) of these

devices is an aspect to explore.

The connectivity can be spatial and/or social. With the

proliferation of personal technologies in the society, an

agent can interact with others overwriting the spatial con-

straints. However, technologies are also spatially influ-

enced and have limitations of their own. We use the terms

‘‘extent’’ and ‘‘periodicity’’ of interactions to harness var-

iations in connectivity. The variations can be in spatial

extent, i.e. global connectivity, local network-based con-

nectivity, group connectivity and proximity based connec-

tivity. The variations in extent of social connectivity can

be locality, relational, or social networking. The extent

also focus on probabilistic connectivity in spatial as well

as social domain. This primarily affects the information

dispersion mechanism as not all agents are humanistically/
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technologically feasible to interact with. The interaction is

also concerned with how often it happens or should hap-

pen, addressed by the concept of periodicity.

Different possibilities of information spread related

with real-life situation can be explored. For example, one

mode of information spread can be observation or vocal

dispersion. In this case the senses are purely humanistic

and individual differences can result in different behavior.

On the technological side, the possibilities of agents hav-

ing various modes of interaction capabilities would play

an important role in deciding about dispersion level and

freshness of transmitted information. Social networking is

yet another paradigm highlighting the importance of

connectivity.

3.2.3. Adaptation. Interaction results in agent behavior

change. The obvious way of realizing the adaptation is to

model the change in behavior within agent’s description

where an agent would be influenced by the information it

receives from different channels: proximity, group, or glo-

bal. For example, an agent can opt to move towards the

least dense region in its surrounding based on its visual

range. Or an agent can delete a destination from its list

knowing that the destination is no longer accessible. The

first example is related to reacting to the situation at the

local level and does not require information dispersion.

The second example is related to reacting to the change

dynamics happening at the societal level and requires

information dispersion.

3.3. Space and mobility
3.3.1. Related work. The representation of the physical

space plays a central role in the simulation. In the domain

of crowd simulation, there are many ways to deal with the

space and consequently the mobility. The CA model of

Schadschneider,36 for example, uses a discrete structure of

space. Helbing et al.,37 in their social force mobility model,

use the equation of motion to describe the change of loca-

tion of the pedestrians, assuming a continuous treatment of

space, similar to the multi-layer utility maximization

approach proposed by Hoogendoorn et al.38 In all of these

models, the pedestrian is seen as a point or a particle in a

2D environment. In the agent-based approaches, the agent

moves through a virtual environment where the move-

ments can be discrete or continuous.39 A completely differ-

ent approach is proposed by Borgers and Timmermans.40

They use a network representation, where each node corre-

sponds to a city-center entry point or a departure point and

each link denotes a different shopping street. In this case,

the network topology represents the walkable space and

the movement occurs along the links between two consec-

utive nodes.

One of the earliest agent-based models used CA as a

representation of space.41 In fact, cells of CA were actually

agents with different states. There are other recent exam-

ples in which a cell acts not only as a space but also as an

agent.4 For more complex ABM, CA was used as an

underlying space with mobile agent on top of it.42–44 Many

software programs also adopted this as one of the design

principles realizing its usability and consistency with most

of the real-life systems, for example, NetLogo,45 Repast,46

and Mason.47 To implement the local mobility decision,

these approaches adopted interaction topologies mostly

based on von Neuman and Moore neighborhoods.48

However, other interaction topologies are also important

and continuously being included into simulation systems.

These are Euclidean 2D/2D space, network topology, GIS,

or Aspatial.49

The most promising progress which probably provided

the impetus to the urban simulation in the last decade is

open GIS data, which is increasingly becoming ubiquitous

and easy to use. Several examples of integration of the

GIS data in the environment modeling at a city or broader

scale are already there. These simulations are categorized

as geo-simulations due to use of GIS data for space mod-

eling. For example GIS data has been used to simulate the

land-use,50 urban growth,5 fire propagation,4 and traffic

flow.6 However, the static nature of GIS data does not

allow an easy integration with dynamic processes.4 CA

give us a simplistic way of performing dynamic integrated

GIS modeling. CA is inherently spatial and can readily be

used with available GIS sources.51 Raster-based GIS is a

simplistic way to get a CA-based space when modeling is

spatial and discrete-time. It does not require complex vec-

tor manipulators and conversions.

For mobility, raster-based CA provides necessary flexi-

bility and behavioral sophistication. Most of the (raster)

GIS-based CA models concerning with land and region

oriented simulations use cells as agents where change in

the states of the cells brings in the dynamics on top of the

static map. However, there can be layers of agents on top

of cell space. For example, in traffic flow simulation,6 the

vehicles reside on top of static space agents (cells) and are

mobile. This increases the complexity in modeling and

execution time of the simulation.

In the case of city-scale crowd simulation, there can be

multiple layers of agent groups arranged in a hierarchical

order. For example, a road segment (collection of cells)

can be assigned to a moving agent representing a vehicle

which may further contain many mobile human agents

(travelers). There are other mobility modalities that can

also be imagined, either independently or in a mixed

mode. There are research efforts which consider combin-

ing two or more of these modalities.52 However, most of

them are conceptual studies. To the best of the authors’

knowledge, the complex task of actually performing a

mixed-mode simulation on a large and real scale has never
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been achieved. Our simulation framework is capable of

achieving it due to its fine-grained spatial distribution after

applying a suitable mechanism of augmenting the space

with necessary semantics.53 This successfully extends the

current spatial abstraction in which the agents can either

be static or mobile, where one of the mobile agents may

occupy a static agent partially or fully, even not

exclusively.

3.3.2. Space. Agents usually have simple behavior which

is influenced by their interaction with other agents. The

guiding principles of agents’ behavior is its autonomy of

making decisions. However, an agent’s decision-making

depends on the agents it is (has been or will be) interacting

with, which many a times has spatial consideration.

Particularly in urban domain, the position of an agent is

very important and it is related to a certain geography. We

consider a cell as a unit of space, which is treated as a sta-

tic agent. The mobile agents occupy the space as an over-

lay, thus adhering to the approach suggested by Epstein,42

Dijkstra,43 and Kirchner.44 Our CA-based interaction

topology is based on Moore neighborhood,48 but with pos-

sible variation of radial scale.

Technically for a space, obstacles and attractors must

also be modeled. Fixed obstacles are represented by

regions that no pedestrian can access. Moving obstacles

are groups of pedestrians occupying space which is conse-

quently not available any more. Attractors are useful areas

with particular meanings for the individuals. Finally, ori-

gin and destination areas, where pedestrians originate and

end up in a system, must be defined.

The concept of space has two meanings: semantic and

physical. In the semantic case, we take space as a room, or

a specific corridor connecting two rooms. The conceptual

definition of space in this way guarantees a more conveni-

ent behavioral analysis granularity focusing on a concep-

tual basis of analysis rather than unnecessary physical

(coordinates, etc.) details of a space. In the physical case,

we describe the space in physical domain which is neces-

sary to generate CA. While modeling a space based on

GIS raster map, we took the physical concept of space for

implementation.

3.3.3. Mobility. The mobility models address how individu-

als move within a locality and make decisions about route

choice. The combination of CA with agents as an overlay

makes it easy to manage the mobility.

The locomotion (small-scale movement) has two basic

features.27

Speed: Speed is the most important feature of locomotion.

In an empty space, the destination and the path are almost

sufficient to reproduce the trajectory of a given pedestrian.

When the environment is crowded and contains obstacles,

the direction and the speed of the pedestrian may be signif-

icantly affected.54

Collision avoidance: The collision avoidance patterns

stem automatically from a combination of the velocity

vector of the other pedestrians and the density parameter.

In microscopic models, an individual tries to keep a mini-

mum distance from the others. In the social force model,

this pattern is described by repulsive social forces.

The route choice is choosing a destination at a coarser

level of interaction.40 An example of route is the Google

map description of route plan given a source and destina-

tion. In CA-based models, the route is chosen based on

limited information in the cells, unless we augment it with

macroscopic information about the decision parameters

such as densities at possible destinations.

4. Agent-based parallel simulation:
The framework components

The framework for agent-based parallel simulation con-

sists of three main components, illustrated as three large

blocks in Figure 1: the image processing unit, the agent-

based PDS unit, and the output data processing and visua-

lization unit.

4.1. Image processing

The massive city map, initially a raster image, is incorpo-

rated into the model by first reducing it to the relevant

areas (Figure 3). The focused area was then segmented into

partitions depending on the processing resources and inter-

process synchronization overhead, i.e. 200 equal sized

squares regions of 20 rows and 10 columns (Figure 4).

Figure 1. Overview of agent-based parallel simulation
framework and the major sub-components.
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These regions were first converted into a binary grid. The

streets are selected to be walkable areas (agents can move

here), and all other areas are considered to be non-

walkable (agents cannot move here). Second, a smoothing

algorithm is run, first horizontally, then vertically, to coun-

ter inconsistencies in raster. The smoothing function is a

low-pass filter, with filter coefficients equal to the recipro-

cal of the span. The 200 files are saved to ASCII format to

be used as GIS-based space.

4.2. Agent-based PDS

The simulation space is divided between two conceptual

memory distributions: the local memory and the shared

memory. The local memory is the memory place of each

of the processor px (or process) out of total P. The shared

memory is the memory place shared by all of the pro-

cesses. The physical sharing of data is mostly managed by

a high-performance software platform designed for shared

memory multiprocessor (SMP) architectures, i.e. Repast

for High-Performance Computing (Repast HPC).55 The

shared memory is used for synchronization of processes,

simulation configuration files, and disk space for files IO

(e.g. simulation log).

The simulation setup at each of the processes can be

guided by simulation and model configuration files. In

Repast HPC, any process, synchronization, and model-

related parameters that need announcements at shared data

level can be written in these configuration files. The most

important are the boundaries of the space in terms of

x- and y-coordinates (in CA mode), the number of proces-

sors and their vertical/horizontal distribution, the simula-

tion time in terms of number of iterations, and

synchronization information. An ID is automatically

assigned to each of the process based on vertical/horizon-

tal distribution of the processes which starts at 0 and ends

with N � 1. It is clear that on the left-hand side of Figure

2, there are 200 processes with IDs from 0 to 199.

A process model can be divided into three components:

setup, model, and synchronization.

4.2.1. Setup. The following steps are part of simulation

setup:

• Update world with GIS: Initially the Repast HPC

creates an inert grid of cells with default setting.

This space should be updated with the GIS infor-

mation provided in ASCII files.
• Set up point of attractions: Another GIS informa-

tion which is not currently part of the ASCII files,

i.e. the location of point of attractions or possible

destinations on the map, provided through model

properties files, should also be incorporated into the

space.

• Create agents: In this step the space is populated

with moving agents; i.e. agents of desired types are

created mentioned in properties files.
• Initialize placement: Moving agents are placed in

the space based on required density and mutual

distance.

The set-up module is executed once before the start of the

simulation.

4.2.2. Model. The following procedures are part of out

agent model:

• Parameter update: The global variables (e.g. pro-

cesses densities) are shared and updated.
• Dynamic change: In this logical step, the space

dynamic is updated. This includes the floor field

spread and spreading of information about change

in dynamics of the space.
• Agents adapt: Each of the moving agent updates

what it knows about the agents in the proximity as

well as update in information at the global level

parameters. This may result in adaptation of agent’s

behavior.
• Agents act: Finally, based on possibly adapted

behavior, an agent performs the required action.

4.2.3. Synchronization. The basic purpose of these proce-

dures is to synchronize the buffer and network space. The

buffer space is set from model properties files so it is same

for all processors. The buffers are managed on all sides of

the adjacent processes and can be synchronized at the ith

Figure 2. Agent-based city-scale PDS using Repast HPC.
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iteration where i can be 1 if required. The network space

shares the information between connected nodes. Each

pair of such agents is synchronized at ith iteration where i

can be 1 if required, if peer agents reside in the adjacent

processes.

This interaction range (proximity) along with the peri-

odicity of executing a step (update/change/adapt/act), syn-

chronization and writing log files should be carefully

managed keeping in view the trade-off between simulation

efficiency and information.

4.3. Output data processing and visualization

The output of our system consists of a series of log files

which are processed by a computer script to obtain the

necessary format both for evaluation and for visualization.

All of the visualizations of the city model are created by

NetLogo.45

5. Efficiency parameters

Scalability is defined as the performance of a system as

the size increases. If we wish to decide whether a simula-

tion model will scale or not, we have to consider the archi-

tectural as well as the algorithmic side of the system. The

following interrelated factors influence the efficiency of a

parallel and distributed agent-based simulation setup:

• Agents’ interaction: The extent (the range of inter-

action) and periodicity (how often the agents inter-

act with each other).
• Agents’ behavior: The complexity of agent’s mod-

els and types of agents present in the system.
• Space distribution across the Processors: How the

space can be distributed across the processors; the

size and shape of the space.
• PDS essentials: How the synchronization mechan-

ism between the processors is implemented and

how often the synchronization takes place.

5.1. Agents’ interaction

The extent (the range of interaction) and periodicity (how

often the agents interact with each other) are two basic para-

meters affecting the PDS efficiency. In our previous study,56

we have focused on simulation efficiency of a large-scale

agent population. We designed and simulated a framework

of large-scale social agent (an abstract definition of a social

entity) simulation with essential social features namely clus-

ter size (interaction range) and connectivity extent where

each agent had to execute a hypothetical workload. It was

concluded that while using a cluster machine, an accelera-

tion of a factor of up to 727 is possible in one of the realistic

variation in cluster size, connectivity and workload, when

compared with a single CPU.

5.2. Agents’ behavior

The complexity of agent’s models and types of agents

present in the system establish the requirement of process-

ing time and memory utilization. In our study,56 we rea-

lized that increase in work load decreases the efficiency of

PDS. Some models are really computationally intensive in

terms of process cycles and memory requirements, e.g.

unconditional trust on an leader agent (as used in this

paper) is far less computationally intensive then a cogni-

tive trust evaluation model we used earlier.57–59 The model

described by Sharpanskykh57 also requires recent cognitive

state of the neighborhood agents, thus demanding frequent

agent interactions.

5.3. Space distribution across the processors

As stated by Li et al.,60 CA provides a natural mechanism

of space distribution across the processors in a regular grid

style. However, the decision about size and shape of the

space chunks is important. It depends on the available

resources on the PDS hardware. It also depends on the

average population of mobile agents attached to one of

those chunks.

5.4. PDS essentials

The processes can be synchronized at various levels; adja-

cent buffers, network of connected nodes, and space

itself.61 For CA-based mapping, buffer synchronization is

essential. The modeling requirements advocate the sync

periodicity and buffer size. The extent of effort required in

synchronization is linked with space distribution. The

space should not be distributed at a very fine level. It

would cost a lot of resources on synchronization alone. In

contrast, it should not be very coarse either resulting in uti-

lization of only a few of the available processors thus

degrading the efficiency.

The optimization of these factors to guarantee the best

efficiency is a challenging task. In this paper (in Section

8), we have reported the important aspects we learned from

our experience.

6. Models
6.1. Map distribution

The space is an extract of a raster map of the city of Linz

with dimension roughly equal to 10,000× 15,000 cells.

Each of these cells is a square and equal to 1 m a side

(1.25 m to be exact). We cropped sides of the map and

focused on more interesting central region of the city (see

Figure 3). This reduced us to a space equal to

5000× 10,000 cells. We divided this space into 200 sec-

tors where a sector is the space distribution unit of parallel

execution. The 200 sectors were distributed as m× n along
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horizontal and vertical axis, respectively, where m is equal

to 10 and n is equal to 20. Each of these 200 sectors was

executed on a single processor as a process pi, where i is

process ID from 0 to 199 (see Figure 1). Each process is

responsible for a space equal to x× y cells (a sector)

where x and y are equal to 500 cells each. It is important

to note that x and y are equal whereas it is not mandatory.

Figure 4 shows a compact visualization of the city space

which is simulated, whereas Figure 5 provides a closeup

view of one sector (highlighted as sector 33) used for

small-scale debugging and test runs before conducting a

full-scale simulation.

6.1.1. Repast patch. A patch is a single unit of space. In

CA it is equivalent to a cell. Each patch/cell is represented

by a integer coordinate anchored at the center of the patch.

The most important GIS information each patch has is the

‘‘structure type’’, i.e. type of the structure the patch is con-

stituted of. At a city scale, the examples are street, motor-

way, building, green areas, water, etc. The type thus can

Figure 3. Original raster map of a city. Our agent-based model is simulated for the highlighted area.
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Figure 4. The simulated city map, showing the 200 sectors as squares. Each sector was simulated by one processor. For the city-
scale evacuation simulations, the exits (PoAs) are highlighted at sectors 22, 64, 96, 124, and 196. PoA at sector 22 is flooded during
the simulation. A closer view of sector 33 is given in Figure 5.
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be mapped onto functionality, e.g. along with vehicles, a

street is where pedestrians can walk whereas a motorway

is where they cannot.

Functionally, we have started with pedestrians only.

However, traffic can also be incorporated in a CA-based

space.6 To achieve a mixed mobility, the inter-model beha-

vior should also be modeled.52 For now, we have simpli-

fied the space of having only binary states (as structure);

walkable (1) and non-walkable (0). Except for streets, the

other walkable areas (e.g. greens, open space etc.) are

ignored. Further a walkable patch may be a PoA having a

significance for decision making and mobility. Figure 5

shows different structure types at a process level. Figure 6

shows a part of the GIS ASCII file and resulting space.

6.2. Floor field: modeling information dispersion
through space

Using floor field concept of CA, the information which

relates to the space can be propagated and stored as a field.

For example, space should know the navigation

information relating to PoA(s). The (movable) agents

knowledge and memory is another layer of navigational

information which can overlay the space information. In

this paper, we do not present results of information sharing

between moving agent (the aspect of information disper-

sion between agents).

The processes and coordinates of the PoAs are provided

manually, but these can be purely random. Each patch has

three variables for decision making:

• Direction: Directions of PoA(s) from current patch -

DOM.
• Distance: Distances of PoA(s) from current patch -

HOPC.
• Route: The sequence of processes towards PoA(s) -

ROUTE.

A typical structure of the variables at a patch level is

shown in Figure 7.

Note that initially these variables assume the role of an

obstacle representation (see Figure 8(d)) with no value

Figure 5. Left: A bitmap view of the test space consisting of 5× 5 (= 25) processes representing one of the city sectors which is
roughly 1=500th of the raster map (Figure 3) and 1/200th of the simulated map (highlighted sector 33 in Figure 4). Right: One (top-
left) of the 25 processes. All white patches represent streets and are walkable by agents. All others are non-walkable by agents.

Figure 6. Example grid of patches (right) created from a sample file (left). Patches colored white are walkable whereas patches
colored black are non-walkable.
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assigned. A PoA is the originator of the floor field (see

Figure 8(b)). A PoA is represented by assigning impossi-

ble values to DOM (�399) and HOPC (0). Each walkable

patch p other than PoA itself iterates through its Moore’s

neighborhood to update its knowledge about PoAs. If a

neighboring patch (source) has information about a new

PoA in its DOM collection or is reporting lesser hop count

for an existing PoA, p creates/updates the PoA informa-

tion of its own with reference to the source (compare

Figure 8(a) with Figure 8(c)). This involves calculating

the relative angle towards the source, incrementing the

hop count of source by 1 and concatenating (represented

by ‘‘.’’) the process ID (if different from process ID of p)

in ROUTE process sequence. For a more frequent case

(when a PoA does not reside on the same process as that

of the patch), the route may have the following formation:

f(15, 2:12:13:14:15)(0, 2:1:0)g where the patch is residing

on process 2 and there are two possible PoAs at process

15 and 0. An example of dispersion of the floor field is

shown in Figure 9, and the complete pseudo-code is given

in Appendix A.

The information flow and decision making is integrated,

i.e. we do not run the floor field generation prior to actual

simulation run. This is possible but does not correspond to

real-world situations. During the simulation run, a patch

may have no or partial information which is as valuable as

full information as agents represent humans who perform

some action in any situation. Each patch would ultimately

have information about all of the PoAs if there is no dis-

connection (a series of non-walkable patches disrupting the

information flow) after sometimes which can be considered

as rate of flow of information and can be controlled.

6.3. Interaction modalities and modeling
multi-resolution
6.3.1. Synchronization. Since each sector is executed by a

unique process, the information synchronization mechan-

ism must be invoked across the processes wherever it is

needed. This applies both to space and mobile agents.

Thinking about propagation of patch fields (both floor

field and change dynamics) is simplistic in a single pro-

cess scenario. But special attention is needed in multiple

processors. The same is true for mobile agents when hav-

ing proximity spread across the processes or having to

‘‘migrate’’ to new process due to mobility. Two modes of

synchronizations are supported by Repast HPC; buffer and

network. Both modes work with space (patch) and mobile

(turtle) agent.

Buffer synchronization: In a grid space (CA), the pro-

cesses may be synchronized across the boundaries with

specification of buffers of a certain size. The buffered

would be shared between the processes as a read-only

copy (both patch and turtle). In Figure 10(a), the buffer

synchronization of size 1 for process 64 is shown. Process

64 synchronizes the patch and turtle data with process 54,

63, 74, and 65. The processes at the diagonals are also

synchronized which are not shown. Some patches of

Figure 7. Structure of one patch’s floor field: The information in all three cases is indexed by PoA’s ID. (a) Direction: d ranges from
0 to 355.99 calculated as relative angle between sender and receiver patch. (b) Distance: h is number of hops the information
traveled before reaching the patch. (c) Route: the sequence of processes propagating the information.

Figure 8. An example PoA, the hatched area, on a process.
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process 64 are shared between more than one processes

(shown with black color).

Network synchronization: The network space shares the

information between connected nodes (both patch and tur-

tle), if peer agents reside in the adjacent processes. An

example is shown in Figure 10(a) where two patches

(linked with each other) are networked with each other

residing on adjacent processes 64 and 74.

Patch and turtle classes are both treated as an agent and

inherit the same field of ‘‘agent id’’, ‘‘process id’’, and

‘‘agent type’’. These three fields are essential to synchro-

nize the buffer of networked space of adjacent processes

both in case of reading or migrating. The other fields are

specific to the functionalities of agents. For example,

Table 1 lists the variables that are synchronized.

6.3.2. Process parameters. There can be situations in which

information at the process level must be shared. For exam-

ple, the ‘‘density per unit walkable area’’

process� unit � density= pop=wal ð1Þ

(where ‘‘pop’’ is equal to count of moving agents on the

process and ‘‘wal’’ is the count of walkable patches at the

process) is stored at process level and accessed by all of

the agents to calculate the speed (see Figure 10(b)).

6.3.3. Global parameters. The inter-process parameters

sharing is an expensive task but cannot be replaced by

local/process-level data. For example, the density at each

process is an absolute requirement for route decision dur-

ing mobility (see Figure 10(c)). However, it cannot be exe-

cuted in each iteration of the simulation due to high cost

of execution.

6.4. Modeling agents behavior and adaptation

All agents are of type pedestrians. There are two types of

pedestrians:

• Ambient intelligence (AmI)-assisted: the agents

who have access to all of the information; process

level as well as across the process.
• Non-AmI-assisted: the agents who have access to

only local information (process level).

Figure 9. Floor field dispersion using Repast HPC supported mechanism. PoA is shown (a) inside the bounding box. Spread after
iteration (b) 1, (c) 3, (d) 6 and (e) 10.
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All agents can recognize the type of any other. All

agents can access any information available at process and

in the buffer zone.

At high level, randomly placed agents are destined

towards one of the PoA as soon as they are able to do it.

Agents use information present in the patch underneath,

information available at process level and information syn-

chronized at global level.

6.4.1. Agents creation and random placement. Agents are

created based on fractions where each process gets a frac-

tion equal to its walkable count as

countType = (PercType=100) *

((ProccessW=TotalW ) * TotalP)
ð2Þ

where PercType is the percentage of agents of a particular

type, ProccessW is the count of walkable patches on the

current process, TotalW is sum of all walkable patches in

the simulation space and TotalP is total population of mova-

ble agents. Each agent is initialized with the following vari-

ables values: orientation(�999), current-exit(�1), speed(0),
wait(�1), confidence(�1) and following(false), irrespective

of agent type. An agent is generated on a patch not already

occupied by another agent and is of the type walkable.

6.4.2. Next-step decision: locomotion and collision
avoidance. There are two general-purpose procedures

common to mobility strategies:

• Before proceeding with an actual move, an agent if

already residing on a PoA would destroy itself with

an increment of 1 in save count at the process level.
• For an actual move, a neighborhood-based ‘‘next-

step decision’’ would be made by selecting the

appropriate direction with a certain speed (step

distance).

Figure 10. Data sharing across processes: (a) buffer and network synchronization; (b) process-level parameters; (c) inter-process
parameters sharing.

Table 1. Variables synchronized across buffers.

Variable name Agent type Description

agent_id Both Unique ID of the agent
process_id Both Process ID where agent is currently residing
agent_type Both Type or class of the agent
structure_type Patch Type of the GIS space
DOM Patch Floor field
HOPC Patch Floor field
ROUTE Patch Floor field
orientation Turtle The current angle of direction which is a value for a PoA from patch’s DOM
curr_exit Turtle The current PoA destination of the agent
wait Turtle How long an agent has been waiting to move (in terms of iterations)
speed Turtle The speed at which the agent would make the current move
following? Turtle Is the agent following an agent with better information than itself?
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6.4.3. Speed of agents. One aspect of proximic influence is

the ‘‘next-step decision’’ seeking availability of one of the

neighbors as described before. The sequence of prefer-

ences as described in Figure 11 are not intuition-based.

We collected evidences to reach to this strategy.62,63 In our

previous work62, we also introduced the notion of local

density-based next cell selection considering a specific

observation range. In the current simulation, we have not

used local density-based direction decision. However, the

speed of the agents is density based, where local observa-

tion range of density is that of local process. The formula-

tion for speed is based on free flow speed and is given in

the following equations:

speed on density= vo * (1� count(agents)=

count(walkables)=max density per patch)
ð3Þ

speed =maxfvmin, speed on densityg ð4Þ

where vo = 1:36, max_density_per_patch is the maximum

allowed pedestrians per patch (= 1) and vmin = 0:0136.
The procedure of the next-step behavior of an agent as

soon as it has a valid value for orientation is given in

Appendix B.

6.5. Modeling social influence

The true influence of social awareness on agents’ decision

making is described as the following behavior of agents

(non-AmI-assisted) due to the presence of more informed

(AmI-assisted) agents in the vicinity. Different possibilities

can be considered starting from very basic where AmI-

assisted agents are informed about densities of all of the

sections of the city so that they make an optimal route

decision and adhere to it. Any non-AmI-assisted agent in

the interaction range of an AmI-assisted agent can then

follow the AmI-assisted agents overwriting its own under-

standing about PoAs. The other possibilities are related

with dispersion mechanism which can be varied in terms

of how the information spreads or extent of connectivity

between AmI-assisted agents.

The effects of availability and freshness of information

to AmI-assisted agents is important. However, there is

another question that is equally important: Why should a

non-AmI-assisted agent follow an AmI-assisted agent?

Currently we have only implemented ‘‘unconditional fol-

lowing’’ which is essentially simple and without any

social consideration. However, in our earlier papers57,64

we investigated the role of emotions in social decision

making particularly following a leader or the formation of

a group. The computational cognitive agent model

anchored on trust and belief was proposed which inte-

grates existing neurological and cognitive theories of

affective decision making. Based on this model several

variants of a large-scale crowd evacuation scenario with

technically assisted agents were simulated. By analysis of

the simulation results it was established that spread of

emotions in a crowd increases resistance of agent groups

to opinion changes and supports continuity of decision

making in a group with technically assisted agents. The

Figure 11. Possible configurations of an object moving at angle 45� . Black circles represent the cells occupied by an object.
Hatched cells show the adopted choice. It is evident that as a strategy, we adopted a random choice between the last three cells (5,
7, and 8) if none of the first five cells are available.
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general outcome is that in a system with scarce and uncer-

tain information, AmI technology can be used to stimulate

emergence of leaders and groups to increase the efficiency

of evacuation.

6.6. Modeling mobility

In mobility we are considering the route selection strate-

gies based on agent types, information extent (full, partial,

or none) available as a floor field, information update rate/

pattern, and principle of unconditional following of AmI-

assisted agents. Numerous variations can be applied such

as controlling the information dispersion mechanism, vary-

ing interaction ranges and population sizes, and introdu-

cing more sophisticated social behavior models. Currently

we are taking the nearest measure to populate the DOM,

HOPC, and ROUTE collections of the patches. We are not

considering multiple routes for one PoA yet. There are two

possibilities in which nearest can be inferred. One where

we do nothing after a PoA x has a value in DOM, i.e. based

on the information which is received first. Owing to the

typical behavior of an instruction sequence in Repast HPC,

this may not be exactly the nearest. However, this can be a

good approximation. In the other we explicitly compare

the hop count of PoA information and update the PoA if

fresh information has hop count less than what a patch

already had.

6.6.1. Mobility factors. In the mobility strategies there are

three factors which are important: (i) population type; (ii)

information granularity; and (iii) approximation

considerations.

Population type. Mobility strategies are dependent on

population (agent type/breed). We have considered three

variations:

• With all agents having non-AmI-assisted type:

Strategy 1 and Strategy 4.
• With all agents having AmI-assisted type: Strategy 2.
• With agents with a percentage of non-AmI-assisted

as well as AmI-assisted type: Strategy 3 and

Strategy 5.

Information granularity. Integrated with all mobility stra-

tegies, this is an assisting feature helpful in deciding the

extent of information (full, partial, and none) an agent has

while choosing one of the PoAs.

Approximation consideration. While using approximate

information, the only motivation here is to save processing

time if there is not much difference in quality. The approx-

imations are realized using Strategy 4 instead of Strategy

1 and Strategy 5 instead of Strategy 3.

6.6.2. Mobility strategies.
Strategy 1. If all of the agents are of type non-AmI-

assisted, only the local movement strategy would work

where the selected PoA would be PoA with minimum hop

count. The strategy would direct the agents towards the

nearest PoA. The notion of nearest is exact here which

means that we make sure that hop count in minimum irre-

spective of when the information is received. See

Appendix C for the full pseudo-code of Strategy 1.

Strategy 2. If all of the agents are of type AmI-assisted,

a decision would be made between available options by all

of the agents. See Appendix E for the full pseudo-code of

Strategy 2, described below.

If we define a PoA, poA, as a series of process identi-

fiers forming a route (R), we can formalize this as

R= fIDj1 , IDj2 , . . . , IDjN g where IDji is the identifier for

the process ji. The subscript j denotes the index of the pro-

cess in the route j. We assume that N processes form a

given route. We compute the average density for each

route as

ρ(poAj)=
XN

e= 1

ρ(IDje )=N ð5Þ

The PoA selected, poA * , is chosen to be that with the min-

imum average density over the route. Formally,

poA * = poAj with min(ρ(poAj)) ð6Þ

Strategy 3. In the case of a hybrid population of agents

of type AmI-assisted and non-AmI-assisted, a mix of

Move_to_Best_Available (AmI-assisted agents) and

Move_to_Nearest_with_Follow (non-AmI-assisted agents)

would be executed. A non-AmI-assisted agent would

always seek for an AmI-assisted agent in the proximity

and follow. The procedure shown in Appendix D is exe-

cuted by each agent with type non-AmI-assisted. The fol-

lowing principle is unconditional and random chosen (in

the case of more than 1 AmI-assisted agent in the sur-

roundings). The AmI-assisted agent would adhere to

Strategy 2 as described before.

Strategy 4. When compared with Strategy 1, this strat-

egy considers the first information about a PoA as optimal

in terms of hop count. The only motivation here is to save

processing time if there is not much difference in quality.

Strategy 5. This is another variation of original strategy

(Strategy 3 in this case) to save processing time if there is

not much difference in quality. While non-AmI-assisted

agents are performing lookup for AmI-assisted agents

within interaction range, line 1 of the procedure

Move_to_Nearest_with_Follow (Appendix D) would not

be executed in each iteration but after a specific gap.
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6.7. Dynamics over time

A trademark of a complex social system is evolving

dynamics. An ABM should be able to handle unpredict-

ability in agents’ behavior and environmental conditions.

We have handled change in states of the environment and

updated mobility strategies to handle it; in particular, the

situation in which the availability of PoA varies with time.

Based on the possible real-world situations, we have taken

three cases:

• Case 1: One of the PoAs x abruptly becomes una-

vailable but readily becomes available again. The

information about its non-availability reaches every-

where instantly. Information about its re-availability

disperses as the PoA x is new and has no history.
• Case 2: One of the PoAs x abruptly becomes una-

vailable and remains as it is. The information about

its non-availability reaches everywhere instantly.
• Case 3: One of the PoA x abruptly becomes unavail-

able and remains as it is. The information about its

non-availability disperses in step-by-step fashion.

We used Strategy 5 of mobility to incorporate these

changes. Taking i as the simulation iteration when the floor

field across the map has been populated with all possible

PoAs, we described the following strategies according to

the three cases given above.

Strategy 6. At iteration i, the contents against PoA x

are erased from DOM, HOPC, and ROUTE collections of

all of the patches. At iteration i+ 1, the information dis-

persion mechanism shown in Appendix A starts again for

PoA x.

Strategy 7. At iteration i, the contents against PoA x are

erased from DOM, HOPC, and ROUTE collections of all

of the patches.

Strategy 8. At iteration i+ 1, a modified version of pro-

cedure shown in Appendix A disperses the information

about non-availability of PoA x throughout the space. This

means that unless the patches receive this information,

they would consider PoA x valid.

7. Software and hardware considerations

To change over from a single CPU system to a SMP envi-

ronment not only allows us to perform simulations on

larger models (space geometry, number of agents) within

reasonable time, but also allows us to simulate more com-

plex behavior. For example, it would enable us to simulate

behavioral aspects of agents, such as trust, belief, decision

making, etc. and with all of its mutual influences on a

city-scale level. It has to be pointed out that the factor of

speed-up actually achievable with a model executed on a

SMP system is highly dependent on inter-agent interac-

tions. While execution time scales almost linearly with the

number of cores for mainly independent agents, it gets

extremely complex and difficult to model for highly inter-

dependent agents.65 Furthermore, parallel processing, in

contrast to execution on single CPU systems, requires

issues such as synchronization (between spatially adjacent

processes) and mutual influence (e.g. the density of agents

in one space fragment or process has an influence on other

space fragments), to be dealt with. Where most SMP fra-

meworks are able to provide built-in mechanisms to

achieve synchronization, the global parameters exchange

across all of the processes has to be explicitly managed by

the programmer.

7.1. Repast HPC

Repast HPC55 is an ABM and simulation framework for

high-performance distributed computing platforms written

in C++ and using MPI66 for parallel operations. It is

designed for parallel environments where many processes

are running in parallel and where the agents themselves

are distributed across processes. Shared, synchronized

spaces are used for passing an agent from one process over

to another, or to gather information such as agent density,

blocked exits, etc. from the neighboring processes. In

addition to writing ‘‘pure’’ C++ applications, Repast

HPC also allows simulation models to be developed in a

Logo-like language similar to the commands used by the

NetLogo framework (http://ccl.northwestern.edu/netlogo/).

7.2. Systems

To discover variety in the different modeling approaches

and to gain experience in potentials, problems, etc. the dif-

ferent platforms might have the full range of environments,

starting with a single CPU system, continuing with a fine-

grained parallel processor (GPU), a SMP system with 768

cores (SGI Altix 4700), and finally a SMP with 2048 cores

(SGI Altix UV) was utilized to challenge different evacua-

tion (i.e. agent movement enriched with individual and

group behavior) models. Subsequently, we give a list of

the hardware/software systems used:

• GPU: NVidia GeForce 9700M GT, G96 PU (625

MHz), 32 stream processors, 512 MB GDDR3,

DirectX 10, Shader 4.0;
• SMP768: SMP, SGI Altix ICE 8200, 768 cores,

type Intel Xeon 2.5 GHz, 1.45 TB shared memory;
• SMP2048: SMP, SGI Altix UltraViolet 1000,

MIMD, 2048 cores (256 Intel Xeon E78837

(WestmereEX) CPUs, 2.66 GHz, 24MB L3 Cache);

16 TB shared memory (ccNUMA), 21.3 TFlops,

192 TB SAS HDD.
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7.3. Comparison between systems

First, possible improvements (i.e. performance speed-up)

between an atomic (single) processing unit and the differ-

ent parallel hardware architectures listed above were eval-

uated separately for different facets of a model. Related

work has revealed that the highest potential for speed-up is

offered by the next-step decision of individual (indepen-

dent) agents. In this case, possible improvements are

almost unbounded, only limited by the number of CPUs/

cores (and their computation power) available. Using for

example GPU, speed-up in the range of 100 to 250 can be

easily achieved (reason is the highly parallel pipelining

architecture).67 If the decision making of an agent is rather

independent from individual data of other agents or by

using optimization methods for models based on proximity

relations (i.e. neighborhood), potential acceleration is still

in the range of a factor of 100.68,69 Using a simulation

model with a (global) mailbox system for the synchronized

exchange of messages, a speed of factor 50 is realistic.70

The more the behavior of a single agent is influencing

other agents, the less is the potential of speed-ups. Even

using sophisticated branch prediction schemes might not

bring that much, as synchronization and rollback are the

dominant routines.

What we have found out on executing a simulation

model with 107 agents processing hypothetical workload

(‘‘move’’, ‘‘adapt’’, and ‘‘interact’’ procedures) is that: (i)

the level of speed-up is constant within a cluster of given

size (number of agents assigned to a process) independent

from the interaction extent with the cluster (varying from

0 to 100%); (ii) the speed-up increases on a logarithmic

scale with the size of the clusters; and (iii) that (at least for

the special case processed) model execution on the single

GPU outperforms the cluster machine (using 128 cores).

For more details we refer to Moser.56

To assess the difference (in terms of execution perfor-

mance) of the two available cluster machines (SMP768,

SMP2048), different variants of the simulation models

were later executed on both systems in a similar way.

Dependent on the simulation strategy, the speed-up

achieved for SMP2048 as compared with SMP768 on a

(rather small) simulation model involving 25 processes

with 250 agents each (6250 agents), and after 500 itera-

tions is in the range between two and more than three.

Hence, both the test and real-scale simulation uses

SMP2048.

8. Evacuation simulation
and selected results

8.1. Scenario

The simulation is performed at two scales: small scale

and full city scale. The small-scale simulation serves to

evaluate the methodologies and models, connecting the

simulation efficiency with that of agents’ behavior. Based

on the small-scale simulation results, the most suitable

mobility strategy in each category of behaviorally ‘‘simi-

lar’’ strategies is chosen based on simulation efficiency

and tolerance to functional equality. Only these chosen

strategies are then simulated at the scale of the city.

At both scales, the raster-map-based space is distributed

across multiple processes. Each patch of the space is either

walkable or not. The space is also augmented with PoAs

where agents need to move to based on the strategy they

are following. The agents can be of two types: AmI-

assisted and non-AmI-assisted.

The exit strategies can be categorized into three types:

(i) nearest (Strategy 1 and 4); (ii) following (Strategy 3 and

5); and (iii) following with evolving space (Strategy 6, 7,

and 8). In category (i), there is no AmI assistance and all

of the agents move to the ‘‘nearest’’ PoA based on the floor

field at time. In category (ii), there is a hybrid population of

AmI-assisted (5%) and non-AmI-assisted (95%) agents. The

AmI-assisted agents calculate the ‘‘optimal’’ PoA based on:

(a) the floor field at time; (b) distances to available PoAs;

and (c) accumulated regional densities along the ROUTE of

available PoAs. The non-AmI-assisted agents, if possible,

just follow one of the AmI-assisted agents in proximity. In

category (iii), one of the variations in (ii) acts as a base case

(Strategy 5). In addition, after a specified time, one PoA

becomes unavailable which affects the agents’ subsequent

choices. Strategies 6, 7, and 8 explore different possibilities

of state change of PoAs with respect to how the information

about non-availability of one of the PoAs is dispersed

throughout the floor field.

It is important to note that floor field is evolving with

time. It would predominantly not affect Strategy 1 or 4

where it can safely be assumed that the CA-based field

spreading mechanism would guarantee that a patch receiv-

ing the information about the first PoA would generally be

the ‘‘nearest’’ PoA. However, it can affect the relative

behavior of strategies in categories (ii) and (iii). The (AmI-

assisted) agents would choose an ‘‘optimal’’ PoA out of

the available few (starting with 1) at the start of the simula-

tion. At that time, an optimal PoA would be more ‘‘near-

est’’ than ‘‘optimal’’.

8.2. Small-scale evaluation study

The test space consists of 5× 5 (= 25) processes and

equals a dimension of 500× 500 cells. This space repre-

sents one section of the city which is roughly 1=500th of

the city map (highlighted in Figure 3). Each process (out

of 25) is equal to 100× 100 cells. The small-scale simu-

lated space can be seen in Figure 12. At this scale, the

PoAs are not realistic and are intuitively chosen. The PoAs

are labeled with ID of the process they reside in and PoA

12 represents the exit which changes its state from ‘‘avail-

able’’ to ‘‘unavailable’’ after a specified time.
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The space in Figure 12 also shows the density of agents

at the start of the simulation, which is 12,500 agents dis-

tributed across 25 processes based on the availability of

walkable space. All 8 mobility strategies were simulated

over 500 iterations. The PoA 12 changes its state from

‘‘available’’ to ‘‘unavailable’’ at iteration 150.

Discussion. Since the overall purpose of simulation is

evacuation here, the analysis of the results is anchored at

evacuation patterns and efficiency. The purpose of the

small-scale simulation was to evaluate the execution time

of the strategies with the behavioral difference. We noted

that there was a significant difference in execution time

when comparing Strategy 1 with Strategy 4 and that of

Strategy 5 with Strategy 2 (see the table in Figure 15),

whereas the behavioral difference is acceptable.

While comparing Strategy 1 and Strategy 4 based on

graphs shown in Figure 13 and Table 2, it is evident that

the notion of ‘‘nearest’’ is affected by the floor field

spreading mechanism due to spatial features of PoAs.

PoAs 0 and 21 have narrow scope when compared with

PoAs 4 and 23 (see Figure 12). That is the reason the per-

centage of agents reaching PoAs 0 and 21 has dropped

when comparing Strategy 4 with Strategy 1. The exact

opposite of that has happened with PoAs 4 and 23 where

PoA 4 is broader in a spatial sense and receives the best

rise. Although the PoA 12 is almost in the center, it does

not mean that it is also at the best place with respect to

spread of CA-based information. That is the reason, the

percentage of agents reaching PoA 12 has dropped when

compared with Strategy 1 (representing more realistic

nearest). Another important factor is to consider the overall

efficiency of the two strategies. It is evident from Figure

14 that due to agents moving towards ‘‘real’’ nearest

almost all of the time, Strategy 1 is able to evacuate much

faster than Strategy 4; 20% more efficient to be exact.

However, there is no difference in total number of agents

evacuated in 500 iterations. In addition, the execution time

of Strategy 1 is nearly seven times that of Strategy 4 (see

Figure 15). Hence, for full-scale simulation, instead of

Strategy 1 we opted for Strategy 4.

Strategy 3 (and 5) disperses the agents more evenly

across the PoAs when compared with Strategy 1 where

load is shed from PoA 12 towards PoAs 0, 4, and 23. This

means that even a small percentage of AmI-assisted agents

are able to make an impact. While comparing Strategy 3

and Strategy 5 based on graphs shown in Figure 13 and

Table 2, it is evident that there is not much difference in

PoA utilization and evacuation speed. Whereas, the execu-

tion time of Strategy 3 is nearly three times that of

Strategy 5 (see Figure 15). Hence, for full-scale simula-

tion, instead of Strategy 3 we opted for Strategy 5.

Both Strategy 2 and Strategy 6 are not realistic settings

at the scale of the city. That is why we have not consid-

ered these for city-scale simulation. Strategy 7 (and 8) is

able to reroute the agents towards new destination if PoA

12 becomes unavailable during the simulation. It can be

seen in Figure 13 and Table 2 that the agents previously

destined for PoA 12 are rerouted towards PoAs 4, 21, and

23. This ‘‘transfer’’ is dependent on the location of the

PoAs where PoAs 23 and 4 get more attention than PoA

21, whereas PoA 0 remains unaffected. Strategy 6 and

Strategy 7 look similar in terms of PoAs usage and execu-

tion time. However, Strategy 7 has much better speed of

evacuation than Strategy 8 due to abrupt knowledge being

spread about unavailability of PoA 12. This diminishes the

possibility of unproductive moves towards PoA 12. We

chose Strategy 7 over Strategy 8 based on these benefits.

8.3. City-scale evacuation simulation

For city-scale simulation, the map was divided into 200

sectors (see Figure 4) distributed as m× n along horizontal

and vertical axis, respectively, where m is equal to 10 and

n is equal to 20. Each of these 200 sectors (or processors)

consisted of a space equal to x× y cells where x and y are

equal to 500 cells each. A total of 200,000 agents were

simulated which corresponded to the population of the

city. Each sector got its share of agents based on fraction

of walkable space it has. At this scale, the PoAs are realis-

tic and represent crowd attractions such as city center

(PoA 64), industrial area (PoA 96), city stadium (PoA

124), suburban center (PoA 22), and motorway exit (PoA

0
4

21

23

12

Figure 12. The small-scale scenario distributed across 25
(5× 5) sectors. Each sector was simulated by one processor.
The exits (PoAs) are highlighted at sectors 0, 4, 12, 21, and 23.
The PoA at sector 12 is flooded during the simulation.
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Figure 14. Small-scale results: comparing strategies irrespective of PoAs usage. Strategies 1–8 are labeled ‘‘Sn’’ where n represents
the strategy number.

Mobility Strategy CPU Time 
hh:mm:ss

Memory 
kb

Virtual Mem. 
kb

Wall Time 
hh:mm:ss

Strategy 1 
(0 % AmI-assisted, 
100 % Non-AmI-assisted) 

11:32:22 1068744 20562304660 00:27:58

Strategy 2 
(100 % AmI-assisted, 
0 % Non-AmI-assisted) 

01:56:21 1067968 20562303596 00:04:53

Strategy 3 
(5 % AmI-assisted, 
95 % Non-AmI-assisted) 

06:56:40 1067512 20562302904 00:16:57

Strategy 4 
(0 % AmI-assisted, 
100 % Non-AmI-assisted) 

01:57:28 1065856 20562301428 00:04:54

Strategy 5 
(5 % AmI-assisted, 
95 % Non-AmI-assisted) 

02:24:3 1068116 20562303472 00:06:02

Strategy 6 
(5 % AmI-assisted, 
95 % Non-AmI-assisted) 

02:27:33 1067432 20562302588 00:06:37

Strategy 7 
(5 % AmI-assisted, 
95 % Non-AmI-assisted) 

01:52:50 1052036 20562287592 00:04:42

Strategy 8 
(5 % AmI-assisted, 
95 % Non-AmI-assisted) 

02:13:37 1061136 20562296924 00:05:33

Figure 15. Small-scale evaluations: comparative PDS performance between mobility strategies.

Table 2. Small-scale simulation: comparison between percentage of agents evacuating from PoAs.

Strategy PoA 0 PoA 4 PoA 12 PoA 21 PoA 23

1 8% 26% 32% 14% 20%
4 4% 33% 27% 12% 22%
3 10% 27% 26% 14% 23%
5 9% 27% 25% 14% 24%
7 9% 33% 10% 19% 31%
8 8% 35% 8% 16% 33%
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196). The simulation was run for 5000 iterations. The PoA

22 changes its state from ‘‘available’’ to ‘‘unavailable’’ at

time 1000.

Discussion. We present the simulation results by computing

the total number of agents exited over time, shown in terms

of iterations for Strategies 4, 5, and 7. In Figure 17, we plot

the total number of exited agents over time, irrespective of

PoAs. We can see that with Strategy 5, more agents exit at

an earlier time: 80% of the agents exited by iteration 3690

in Strategy 5 whereas 80% of the agents exited by iteration

4540 in Strategy 4. Obviously Strategy 7 cannot compete

with Strategy 5 as transfer of agents from PoA 22 towards

other PoAs would require more time. That is the reason

Strategy 7 was only able to evacuate 60% of the agents in

a given time.

Next we look more closely into the results by consider-

ing the number of exited agents per PoA (see Figure 16

and Table 3). Overall, we can see that in Strategy 5 the

PoAs are more evenly used, i.e. the least used exits from
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Figure 16. City-scale results: individual PoAs plots. The graphs show time series of evacuating agents through PoAs 22, 64, 96, 124,
and 196 for Strategies 4, 5, and 7.

Figure 17. City-scale results: comparing strategies irrespective of PoAs usage. Strategies 4, 5, and 7 are labeled ‘‘Sn’’ where n
represents the strategy number.
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Strategy 4 have more usage in Strategy 5, and the highest

used exits from Strategy 4 have less usage in Strategy 5.

This results in a delayed flattening out of many of the

curves in Strategy 5, which results in the earlier exiting by

agents. In Strategy 4, only 2 out of 5 PoAs remain active

whereas the others flattens out in first half of the

simulation.

The actual positions of the agents in the five processes

containing PoAs are shown in Figure 18. Plots (a) to (e)

show the configuration at iteration 2500, exactly half way

through the simulation for Strategy 4. Exactly the same

frames at iteration 2500 are shown for Strategy 5 in (f) to

(j). The agents are the small dots, often lined up at the exit-

ing points. The largest noticeable difference can be seen

for exit 2 ((b) versus (g)), where several paths are devel-

oped towards the exit in (g), although only one is taken in

(b). This clearly shows the difference in the process densi-

ties resulting in more diverse paths towards the exit for

Strategy 5. Also, at exit 3 ((c) versus (h)), in Strategy 4 the

exit is no longer used half way through the process, how-

ever, it is still used in Strategy 5. A similar conclusion can

be made for exit 5 ((e) vs. (j)), where this exit is quite

distant and non-central, however, it is made to better use

in Strategy 5 by the agents.

Visual comparison of Strategies 4, 5, and 7 is given in

Figure 19. It is evident that agents start to disperse away

from PoA 22 towards others PoAs around iteration 2500

when comparing Strategy 4 with Strategy 5. When com-

paring Strategy 5 with Strategy 7, it can be concluded that

both are similar before iteration 1000. When PoA 22

becomes unavailable, we can see migration of agents from

PoA 22 to other PoAs (at t= 1100). Later, there are no

agents around PoA 22 at iteration 1500.

9. Conclusion

The potential of PDS for an agent-based geo-simulation

can only be materialized if in addition to an efficient hard-

ware architecture, the algorithmic optimization is also

taken care of in order to fully utilize the ABM strength in

which each agent may potentially have a unique behavior.

The scale becomes a real issue if the focus is an urban

space with billions of space agents in addition to millions

Table 3. City-scale simulation: comparison between percentage of agents evacuating from PoAs.

Strategy PoA 22 PoA 64 PoA 96 PoA 124 PoA 196

1 43% 12% 3% 40% 18%
4 27% 26% 10% 33% 4%
7 8% 29% 11% 47% 5%

Figure 18. Visualization of 5 exits half-way through the simulation (iteration 2500) for Strategy 4 (a)–(e) and Strategy 5 (f)–(j).
Agents are demonstrated as tiny dots. The point in each figure visualizes the exit. We can see the more even distribution of exit
usage in Strategy 5, especially in (b) versus (g), where more paths are created towards the exit. In addition (c) versus (h) and (e)
versus (j) illustrate the less central exits continue to be used in Strategy 5, although not in Strategy 4.
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of mobile agents. Fortunately the space agents (e.g. cells

space in CA) are usually not as diverse in function as

moving agents can be, mainly representing spatial features

of the environment which can be as basic as a bitmap rep-

resenting walkable and non-walkable space in a map.

However, a space like that would require a smart informa-

tion dispersion mechanism to be incorporated, so that

mobile agents are able to make mobility decisions. In

addition to an efficient floor field spread, the interaction

of moving agents with others should also be minimized

within tolerable limits.

While running a simulation at the scale of a medium-

sized city, one of the mobility strategies (Strategy 1) can

be that agents always move towards the nearest PoA.

However, this requires updates based on the neighborhood

field in each of the simulation iterations. This is a choice

clearly not practical as we observed that we had to abort

the simulation run after 278 hours in which only the 4% of

the simulation was complete.71 By modifying Strategy 1

into Strategy 4, which considers the first information

received about a PoA as the final information, a full simu-

lation run was possible in around 12 hours. The change is

strategy does not incur much difference in mobility pattern

due to the large scale. Similarly we were able to run the

simulation with Strategy 5 in 98 hours which was not fea-

sible at all with Strategy 3.71 Strategies 5 and 3 differ only

in terms of moving agents interaction periodicity.

Simulation of urban mobility is a complex task with

respect to variety of aspects that are important. We have

tried to conceptualize these aspects into categories and

designed an agent-based PDS framework to simulate. This

is an ongoing research where we intend to enrich the

agents’ models with more data, information, and beha-

vioral rules for future works.
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Appendix A: Patches’ floor field generation

Pseudo-code of floor field generation for patches.

1 if patch p structure_Type  == “walkable” and is not a “PoA” 
for each neighboring patch n  
// Moore’s neighborhood of 8 cells 

for each pair p <key, value> of DOMn 
// key, value pairs of available PoAs 
 if key does not exists in DOMp  

// if this PoA does not exists, update 
DOMp [key] = relative-angle to n 
HOPCp [key] = value(HOPCn [key]) + 1 
ROUTEp [key] = value(ROUTEn [key]) . ProcessID 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Appendix B: Proceed_to_Next_Cell

Next-step behavior of an agent. The procedure is executed for each agent which is based on the orientation information

that it has to make a cell-to-choose decision according to the rules shown in Figure 11 and updates agent-level variables

accordingly.

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

heading (orientation) 
p = patchAtHeadingAndDistance (heading, speed)  
// take the patch at heading and distance 

if (p  turtlesHere.size > 0) || p  structure_Type == 3)  
// if patch already has some agents or is not walkable 
 if (scanNeighborinOrderRight(angle))  

// different options are scanned in a typical order 
heading(angle)  
// setting heading to angle of first available option 
move(speed)  
// a step at a speed 
reset_wait()  
// wait variable is reset to 0 
confidence(x)  
// confidence is assigned based on how different the  
// selected option is from original angle 

else 
inc_wait()  
// if there is no available neighbor, wait is incremented by 1 

else  // if patch is available 
move(speed) 
reset_wait() 
confidence(100) 
// maximum confidence sue to adoption of desired angle 
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Appendix C: Move_to_Nearest

Pseudo-code of Strategy 1 executed by non-AmI-assisted agents. The procedure Proceed_to_Next_Cell is given in

Appendix B.

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

p = patchHere // patch underneath this agent 
selected_exit  = min {key(HOPCp)} 
// trying to assign key of minimum value (least hop count) to selected_exit.  
// If there is only 1 element in the collection, it would be selected.  
// If there is no element in collection, this statement would not execute.      
if (selected_exit == null) 

inc_wait() // increments the agent’s wait variable by 1 
else 

find pair  <key, value> in DOMp  
orientation(value(DOMp [key])) // assigning value to agent variable 
current_exit(selected_exit) // assigning value to agent variable 
Proceed_to_Next_Cell() // procedure call 

Appendix D: Move_to_Nearest_with_Follow

Pseudo-code of Strategy 3 executed by non-AmI-assisted agents. The procedure Proceed_to_Next_Cell is given in

Appendix B. The procedure Move_to_Nearest is given in Appendix C.

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

if (current_exit != -1) // if there is an actionable exit 
p = patchHere // patch underneath this agent 
if (size(p  DOMp) >= 2) 

set_OptimalPoA()  
// if there is enough information, set the best option as current PoA,  
 // this statement would execute at every nth iteration (e.g. n = 50)   

 find pair  <key, value> in DOMp where key = current_exit   
orientation(value(DOMp [key])) // assigning value to agent variable 
Proceed_to_Next_Cell() // procedure call 

else 
if (size(p  DOMp) >= 2) 

set_OptimalPoA()  
inc_wait() 

else 
if (size(p  DOMp) == 1) 

set_AvailablePoA() // setting it for one available exit 
inc_wait() 

else // if no information available for any PoA 
inc_wait() 

 
set_OptimalPoA() 

current_weight = 999999; // a very high value for comparison 
aggregate_route_density = 0; // initializing densities across the route 
selected_PoA = -1; // default value for selected PoA 
for each pair  <key, value> in ROUTEp 

 current_process = key 
 current_route_sequence  = value 
 for each element e in current_route_sequence  

// hiding full details here of string manipulations 
find pair  <key, value> in DENSITIESprocess where key = e 
current_density = value(DENSITIESprocess [key] 
aggregate_route_density = aggregate_route_density + current_density 

aggregate_route_density = aggregate_route_density / size(current_route_sequence) 
find pair  <key, value> in DOMp where key = current_process 

 temp_value = aggregate_route_density × value(DOMp [key] 
 if (temp_value <= current_weight) 

current_weight = temp_value 
selected_PoA = current_process 

current_exit(selected_PoA) 
 
set_AvailablePoA() 
current_exit(p  DOMp .first[key]) // assigning first key as current exit 
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Appendix E: Move_to_Best_Available

Pseudo-code of Strategy 2 executed by AmI-assisted agents. The procedure Proceed_to_Next_Cell is given in Appendix B.

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

if there exits an AmI-assisted agent a in interation_range  
// randomly pick one AmI agent in interaction range (e.g. r = 10 cells)  

if (a current_exit != -1) // if a has already made a decision   
following(true) // start following 
current_exit(a current_exit) // making a’s PoA as its own  

if (following()) 
p = patchHere // patch underneath this agent 
find pair  <key, value> in DOMp where key = current_exit   
orientation(value(DOMp [key])) // assigning value to agent variable 
Proceed_to_Next_Cell() // procedure call 

else 
Move_to_Nearest() // procedure call 
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